Cargando…

Evaluation of techniques to improve a deep learning algorithm for the automatic detection of intracranial haemorrhage on CT head imaging

BACKGROUND: Deep learning (DL) algorithms are playing an increasing role in automatic medical image analysis. PURPOSE: To evaluate the performance of a DL model for the automatic detection of intracranial haemorrhage and its subtypes on non-contrast CT (NCCT) head studies and to compare the effects...

Descripción completa

Detalles Bibliográficos
Autores principales: Yeo, Melissa, Tahayori, Bahman, Kok, Hong Kuan, Maingard, Julian, Kutaiba, Numan, Russell, Jeremy, Thijs, Vincent, Jhamb, Ashu, Chandra, Ronil V., Brooks, Mark, Barras, Christen D., Asadi, Hamed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Vienna 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10083149/
https://www.ncbi.nlm.nih.gov/pubmed/37032417
http://dx.doi.org/10.1186/s41747-023-00330-3
Descripción
Sumario:BACKGROUND: Deep learning (DL) algorithms are playing an increasing role in automatic medical image analysis. PURPOSE: To evaluate the performance of a DL model for the automatic detection of intracranial haemorrhage and its subtypes on non-contrast CT (NCCT) head studies and to compare the effects of various preprocessing and model design implementations. METHODS: The DL algorithm was trained and externally validated on open-source, multi-centre retrospective data containing radiologist-annotated NCCT head studies. The training dataset was sourced from four research institutions across Canada, the USA and Brazil. The test dataset was sourced from a research centre in India. A convolutional neural network (CNN) was used, with its performance compared against similar models with additional implementations: (1) a recurrent neural network (RNN) attached to the CNN, (2) preprocessed CT image-windowed inputs and (3) preprocessed CT image-concatenated inputs. The area under the receiver operating characteristic curve (AUC-ROC) and microaveraged precision (mAP) score were used to evaluate and compare model performances. RESULTS: The training and test datasets contained 21,744 and 491 NCCT head studies, respectively, with 8,882 (40.8%) and 205 (41.8%) positive for intracranial haemorrhage. Implementation of preprocessing techniques and the CNN-RNN framework increased mAP from 0.77 to 0.93 and increased AUC-ROC [95% confidence intervals] from 0.854 [0.816–0.889] to 0.966 [0.951–0.980] (p-value = 3.91 × 10(−12)). CONCLUSIONS: The deep learning model accurately detected intracranial haemorrhage and improved in performance following specific implementation techniques, demonstrating clinical potential as a decision support tool and an automated system to improve radiologist workflow efficiency. KEY POINTS: • The deep learning model detected intracranial haemorrhages on computed tomography with high accuracy. • Image preprocessing, such as windowing, plays a large role in improving deep learning model performance. • Implementations which enable an analysis of interslice dependencies can improve deep learning model performance. • Visual saliency maps can facilitate explainable artificial intelligence systems. • Deep learning within a triage system may expedite earlier intracranial haemorrhage detection. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s41747-023-00330-3.