Cargando…
Evaluation of techniques to improve a deep learning algorithm for the automatic detection of intracranial haemorrhage on CT head imaging
BACKGROUND: Deep learning (DL) algorithms are playing an increasing role in automatic medical image analysis. PURPOSE: To evaluate the performance of a DL model for the automatic detection of intracranial haemorrhage and its subtypes on non-contrast CT (NCCT) head studies and to compare the effects...
Autores principales: | Yeo, Melissa, Tahayori, Bahman, Kok, Hong Kuan, Maingard, Julian, Kutaiba, Numan, Russell, Jeremy, Thijs, Vincent, Jhamb, Ashu, Chandra, Ronil V., Brooks, Mark, Barras, Christen D., Asadi, Hamed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10083149/ https://www.ncbi.nlm.nih.gov/pubmed/37032417 http://dx.doi.org/10.1186/s41747-023-00330-3 |
Ejemplares similares
-
Endovascular balloon-assisted liquid embolisation of soft tissue vascular malformations: technical feasibility and safety
por: Lamanna, Anthony, et al.
Publicado: (2021) -
Optimizing Resources for Endovascular Clot Retrieval for Acute Ischemic Stroke, a Discrete Event Simulation
por: Huang, Shiwei, et al.
Publicado: (2019) -
Sustainability in interventional radiology: are we doing enough to save the environment?
por: Shum, Pey Ling, et al.
Publicado: (2022) -
Endovascular Treatment of Intracranial Aneurysms Using the Novel Low Profile Visualized Intraluminal Support EVO Stent: Multicenter Early Feasibility Experience
por: Foo, Michelle, et al.
Publicado: (2021) -
CODE STROKE ALERT—Concept and Development of a Novel Open-Source Platform to Streamline Acute Stroke Management
por: Seah, Huey Ming, et al.
Publicado: (2019)