Cargando…

Multivendor fully automatic uncertainty management approaches for the intuitive representation of DME fluid accumulations in OCT images

Diabetes represents one of the main causes of blindness in developed countries, caused by fluid accumulations in the retinal layers. The clinical literature defines the different types of diabetic macular edema (DME) as cystoid macular edema (CME), diffuse retinal thickening (DRT), and serous retina...

Descripción completa

Detalles Bibliográficos
Autores principales: Vidal, Plácido, de Moura, Joaquim, Novo, Jorge, Ortega, Marcos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10083163/
https://www.ncbi.nlm.nih.gov/pubmed/36690902
http://dx.doi.org/10.1007/s11517-022-02765-z
Descripción
Sumario:Diabetes represents one of the main causes of blindness in developed countries, caused by fluid accumulations in the retinal layers. The clinical literature defines the different types of diabetic macular edema (DME) as cystoid macular edema (CME), diffuse retinal thickening (DRT), and serous retinal detachment (SRD), each with its own clinical relevance. These fluid accumulations do not present defined borders that facilitate segmentational approaches (specially the DRT type, usually not taken into account by the state of the art for this reason) so a diffuse paradigm is used for its detection and visualization. In this paper, we propose three novel approaches for the representation and characterization of these types of DME. A baseline proposal, using a convolutional neural network as backbone, another based on transfer learning from a general domain, and a third approach exploiting information of regions without a defined label. Overall, our baseline proposal obtained an AUC of 0.9583 ± 0.0093, the approach pretrained with a general-domain dataset an AUC of 0.9603 ± 0.0087, and the approach pretrained in the domain taking advantage of uncertainty, an AUC of 0.9619 ± 0.0073. [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11517-022-02765-z.