Cargando…
Fully feature fusion based neural network for COVID-19 lesion segmentation in CT images()
Coronavirus Disease 2019 (COVID-19) spreads around the world, seriously affecting people’s health. Computed tomography (CT) images contain rich semantic information as an auxiliary diagnosis method. However, the automatic segmentation of COVID-19 lesions in CT images faces several challenges, includ...
Autores principales: | Li, Wei, Cao, Yangyong, Wang, Shanshan, Wan, Bolun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10083211/ https://www.ncbi.nlm.nih.gov/pubmed/37082352 http://dx.doi.org/10.1016/j.bspc.2023.104939 |
Ejemplares similares
-
Verte-Box: A Novel Convolutional Neural Network for Fully Automatic Segmentation of Vertebrae in CT Image
por: Li, Bing, et al.
Publicado: (2022) -
Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks
por: Chen, Liang, et al.
Publicado: (2017) -
Rapid Airplane Detection in Remote Sensing Images Based on Multilayer Feature Fusion in Fully Convolutional Neural Networks
por: Xu, Yuelei, et al.
Publicado: (2018) -
Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing
por: Chlebus, Grzegorz, et al.
Publicado: (2018) -
Fully automated segmentation in temporal bone CT with neural network: a preliminary assessment study
por: Wang, Jiang, et al.
Publicado: (2021)