Cargando…

Adult neurogenesis in the primate hippocampus

Adult hippocampal neurogenesis (AHN) is crucial for learning, memory, and emotion. Deficits of AHN may lead to reduced cognitive abilities and neurodegenerative disorders, such as Alzheimer's disease. Extensive studies on rodent AHN have clarified the developmental and maturation processes of a...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Ye, Xu, Na-Na, Hao, Zhao-Zhe, Liu, Sheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Science Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10083228/
https://www.ncbi.nlm.nih.gov/pubmed/36785898
http://dx.doi.org/10.24272/j.issn.2095-8137.2022.399
Descripción
Sumario:Adult hippocampal neurogenesis (AHN) is crucial for learning, memory, and emotion. Deficits of AHN may lead to reduced cognitive abilities and neurodegenerative disorders, such as Alzheimer's disease. Extensive studies on rodent AHN have clarified the developmental and maturation processes of adult neural stem/progenitor cells. However, to what extent these findings apply to primates remains controversial. Recent advances in next-generation sequencing technologies have enabled in-depth investigation of the transcriptome of AHN-related populations at single-cell resolution. Here, we summarize studies of AHN in primates. Results suggest that neurogenesis is largely shared across species, but substantial differences also exist. Marker gene expression patterns in primates differ from those of rodents. Compared with rodents, the primate hippocampus has a higher proportion of immature dentate granule cells and a longer maturation period of newly generated granule cells. Future research on species divergence may deepen our understanding of the mechanisms underlying adult neurogenesis in primates.