Cargando…

Population pharmacokinetics and model-based dosing evaluation of bedaquiline in multidrug-resistant tuberculosis patients

Aims: Bedaquiline is now recommended to all patients in the treatment of multidrug-resistant tuberculosis (MDR-TB) using standard dosing regimens. As the ability to measure blood drug concentrations is very limited, little is known about drug exposure and treatment outcome. Thus, this study aimed to...

Descripción completa

Detalles Bibliográficos
Autores principales: Shao, Ge, Bao, Ziwei, Davies Forsman, Lina, Paues, Jakob, Werngren, Jim, Niward, Katarina, Schön, Thomas, Bruchfeld, Judith, Alffenaar, Jan-Willem, Hu, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10083270/
https://www.ncbi.nlm.nih.gov/pubmed/37050904
http://dx.doi.org/10.3389/fphar.2023.1022090
_version_ 1785021471052005376
author Shao, Ge
Bao, Ziwei
Davies Forsman, Lina
Paues, Jakob
Werngren, Jim
Niward, Katarina
Schön, Thomas
Bruchfeld, Judith
Alffenaar, Jan-Willem
Hu, Yi
author_facet Shao, Ge
Bao, Ziwei
Davies Forsman, Lina
Paues, Jakob
Werngren, Jim
Niward, Katarina
Schön, Thomas
Bruchfeld, Judith
Alffenaar, Jan-Willem
Hu, Yi
author_sort Shao, Ge
collection PubMed
description Aims: Bedaquiline is now recommended to all patients in the treatment of multidrug-resistant tuberculosis (MDR-TB) using standard dosing regimens. As the ability to measure blood drug concentrations is very limited, little is known about drug exposure and treatment outcome. Thus, this study aimed to model the population pharmacokinetics as well as to evaluate the currently recommended dosage. Methodology: A bedaquiline population pharmacokinetic (PK) model was developed based on samples collected from the development cohort before and 1, 2, 3, 4, 5, 6, 8, 12, 18, and 24 h after drug intake on week 2 and week 4 of treatment. In a prospective validation cohort of patients with MDR-TB, treated with bedaquiline-containing standardized regimen, drug exposure was assessed using the developed population PK model and thresholds were identified by relating to 2-month and 6-month sputum culture conversion and final treatment outcome using classification and regression tree analysis. In an exploratory analysis by the probability of target attainment (PTA) analysis, we evaluated the recommended dosage at different MIC levels by Middlebrook 7H11 agar dilution (7H11). Results: Bedaquiline pharmacokinetic data from 55 patients with MDR-TB were best described by a three-compartment model with dual zero-order input. Body weight was a covariate of the clearance and the central volume of distribution, albumin was a covariate of the clearance. In the validation cohort, we enrolled 159 patients with MDR-TB. The 7H11 MIC mode (range) of bedaquiline was 0.06 mg (0.008–0.25 mg/L). The study participants with AUC(0-24h)/MIC above 175.5 had a higher probability of culture conversion after 2-month treatment (adjusted relative risk, aRR:16.4; 95%CI: 5.3–50.4). Similarly, those with AUC(0-24h)/MIC above 118.2 had a higher probability of culture conversion after 6-month treatment (aRR:20.1; 95%CI: 2.9–139.4), and those with AUC(0-24h)/MIC above 74.6 had a higher probability of successful treatment outcome (aRR:9.7; 95%CI: 1.5–64.8). Based on the identified thresholds, simulations showed that the WHO recommended dosage (400 mg once daily for 14 days followed by 200 mg thrice weekly) resulted in PTA >90% for the majority of isolates (94%; MICs ≤0.125 mg/L). Conclusion: We established a population PK model for bedaquiline in patients with MDR-TB in China. Based on the thresholds and MIC distribution derived in a clinical study, the recommended dosage of bedaquiline is sufficient for the treatment of MDR-TB.
format Online
Article
Text
id pubmed-10083270
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-100832702023-04-11 Population pharmacokinetics and model-based dosing evaluation of bedaquiline in multidrug-resistant tuberculosis patients Shao, Ge Bao, Ziwei Davies Forsman, Lina Paues, Jakob Werngren, Jim Niward, Katarina Schön, Thomas Bruchfeld, Judith Alffenaar, Jan-Willem Hu, Yi Front Pharmacol Pharmacology Aims: Bedaquiline is now recommended to all patients in the treatment of multidrug-resistant tuberculosis (MDR-TB) using standard dosing regimens. As the ability to measure blood drug concentrations is very limited, little is known about drug exposure and treatment outcome. Thus, this study aimed to model the population pharmacokinetics as well as to evaluate the currently recommended dosage. Methodology: A bedaquiline population pharmacokinetic (PK) model was developed based on samples collected from the development cohort before and 1, 2, 3, 4, 5, 6, 8, 12, 18, and 24 h after drug intake on week 2 and week 4 of treatment. In a prospective validation cohort of patients with MDR-TB, treated with bedaquiline-containing standardized regimen, drug exposure was assessed using the developed population PK model and thresholds were identified by relating to 2-month and 6-month sputum culture conversion and final treatment outcome using classification and regression tree analysis. In an exploratory analysis by the probability of target attainment (PTA) analysis, we evaluated the recommended dosage at different MIC levels by Middlebrook 7H11 agar dilution (7H11). Results: Bedaquiline pharmacokinetic data from 55 patients with MDR-TB were best described by a three-compartment model with dual zero-order input. Body weight was a covariate of the clearance and the central volume of distribution, albumin was a covariate of the clearance. In the validation cohort, we enrolled 159 patients with MDR-TB. The 7H11 MIC mode (range) of bedaquiline was 0.06 mg (0.008–0.25 mg/L). The study participants with AUC(0-24h)/MIC above 175.5 had a higher probability of culture conversion after 2-month treatment (adjusted relative risk, aRR:16.4; 95%CI: 5.3–50.4). Similarly, those with AUC(0-24h)/MIC above 118.2 had a higher probability of culture conversion after 6-month treatment (aRR:20.1; 95%CI: 2.9–139.4), and those with AUC(0-24h)/MIC above 74.6 had a higher probability of successful treatment outcome (aRR:9.7; 95%CI: 1.5–64.8). Based on the identified thresholds, simulations showed that the WHO recommended dosage (400 mg once daily for 14 days followed by 200 mg thrice weekly) resulted in PTA >90% for the majority of isolates (94%; MICs ≤0.125 mg/L). Conclusion: We established a population PK model for bedaquiline in patients with MDR-TB in China. Based on the thresholds and MIC distribution derived in a clinical study, the recommended dosage of bedaquiline is sufficient for the treatment of MDR-TB. Frontiers Media S.A. 2023-03-27 /pmc/articles/PMC10083270/ /pubmed/37050904 http://dx.doi.org/10.3389/fphar.2023.1022090 Text en Copyright © 2023 Shao, Bao, Davies Forsman, Paues, Werngren, Niward, Schön, Bruchfeld, Alffenaar and Hu. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Pharmacology
Shao, Ge
Bao, Ziwei
Davies Forsman, Lina
Paues, Jakob
Werngren, Jim
Niward, Katarina
Schön, Thomas
Bruchfeld, Judith
Alffenaar, Jan-Willem
Hu, Yi
Population pharmacokinetics and model-based dosing evaluation of bedaquiline in multidrug-resistant tuberculosis patients
title Population pharmacokinetics and model-based dosing evaluation of bedaquiline in multidrug-resistant tuberculosis patients
title_full Population pharmacokinetics and model-based dosing evaluation of bedaquiline in multidrug-resistant tuberculosis patients
title_fullStr Population pharmacokinetics and model-based dosing evaluation of bedaquiline in multidrug-resistant tuberculosis patients
title_full_unstemmed Population pharmacokinetics and model-based dosing evaluation of bedaquiline in multidrug-resistant tuberculosis patients
title_short Population pharmacokinetics and model-based dosing evaluation of bedaquiline in multidrug-resistant tuberculosis patients
title_sort population pharmacokinetics and model-based dosing evaluation of bedaquiline in multidrug-resistant tuberculosis patients
topic Pharmacology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10083270/
https://www.ncbi.nlm.nih.gov/pubmed/37050904
http://dx.doi.org/10.3389/fphar.2023.1022090
work_keys_str_mv AT shaoge populationpharmacokineticsandmodelbaseddosingevaluationofbedaquilineinmultidrugresistanttuberculosispatients
AT baoziwei populationpharmacokineticsandmodelbaseddosingevaluationofbedaquilineinmultidrugresistanttuberculosispatients
AT daviesforsmanlina populationpharmacokineticsandmodelbaseddosingevaluationofbedaquilineinmultidrugresistanttuberculosispatients
AT pauesjakob populationpharmacokineticsandmodelbaseddosingevaluationofbedaquilineinmultidrugresistanttuberculosispatients
AT werngrenjim populationpharmacokineticsandmodelbaseddosingevaluationofbedaquilineinmultidrugresistanttuberculosispatients
AT niwardkatarina populationpharmacokineticsandmodelbaseddosingevaluationofbedaquilineinmultidrugresistanttuberculosispatients
AT schonthomas populationpharmacokineticsandmodelbaseddosingevaluationofbedaquilineinmultidrugresistanttuberculosispatients
AT bruchfeldjudith populationpharmacokineticsandmodelbaseddosingevaluationofbedaquilineinmultidrugresistanttuberculosispatients
AT alffenaarjanwillem populationpharmacokineticsandmodelbaseddosingevaluationofbedaquilineinmultidrugresistanttuberculosispatients
AT huyi populationpharmacokineticsandmodelbaseddosingevaluationofbedaquilineinmultidrugresistanttuberculosispatients