Cargando…
The essential role of forkhead box P4 (FOXP4) in thyroid cancer: a study related to The Cancer Genome Atlas and experimental data
OBJECTIVE: Thyroid cancer (THCA) is the most common endocrine cancer in the world. Although most patients with THCA have a good prognosis, the prognosis of those with THCA who have an extra-glandular invasion, vascular invasion, and distant metastasis is poor. Therefore, it is very important to find...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bioscientifica Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10083663/ https://www.ncbi.nlm.nih.gov/pubmed/36752821 http://dx.doi.org/10.1530/EC-22-0390 |
Sumario: | OBJECTIVE: Thyroid cancer (THCA) is the most common endocrine cancer in the world. Although most patients with THCA have a good prognosis, the prognosis of those with THCA who have an extra-glandular invasion, vascular invasion, and distant metastasis is poor. Therefore, it is very important to find potential biomarkers that can effectively predict the prognosis and progression of highly aggressive THCAs. It has been identified that forkhead box P4 (FOXP4) may be a new biomarker for the proliferation and prognosis for tumor diagnosis. However, the expression and function of FOXP4 in THCA remain to be determined. METHODS: In the present study, the function of FOXP4 in cells was investigated through the comprehensive analysis of data in The Cancer Genome Atlas and combined with experiments including immunohistochemistry (IHC), colony formation, Cell Counting Kit-8 assay, wound scratch healing, and transwell invasion assay. RESULTS: In the present study, relevant bioinformatic data showed that FOXP4 was highly expressed in THCA, which was consistent with the results of the IHC and cell experiments. Meanwhile, 10 FOXP4-related hub genes were identified as potential diagnostic genes for THCA. It was found in further experiments that FOXP4 was located in the nucleus of THCA cells, and the expression of FOXP4 in the nucleus was higher than that in the cytoplasm. FOXP4 knockdown inhibited in vitro proliferation of the THCA cells, whereas overexpression promoted the proliferation and migration of THCA cells. Furthermore, deficiency of FOXP4 induced cell-cycle arrest. CONCLUSION: FOXP4 might be a potential target for diagnosing and treating THCA. |
---|