Cargando…
Four‐Dimensional Machine Learning Radiomics for the Pretreatment Assessment of Breast Cancer Pathologic Complete Response to Neoadjuvant Chemotherapy in Dynamic Contrast‐Enhanced MRI
BACKGROUND: Breast cancer response to neoadjuvant chemotherapy (NAC) is typically evaluated through the assessment of tumor size reduction after a few cycles of NAC. In case of treatment ineffectiveness, this results in the patient suffering potentially severe secondary effects without achieving any...
Autores principales: | Caballo, Marco, Sanderink, Wendelien B. G., Han, Luyi, Gao, Yuan, Athanasiou, Alexandra, Mann, Ritse M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10083908/ https://www.ncbi.nlm.nih.gov/pubmed/35633290 http://dx.doi.org/10.1002/jmri.28273 |
Ejemplares similares
-
Multi‐marker quantitative radiomics for mass characterization in dedicated breast CT imaging
por: Caballo, Marco, et al.
Publicado: (2020) -
Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI
por: Braman, Nathaniel M., et al.
Publicado: (2017) -
Erratum to: Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI
por: Braman, Nathaniel M., et al.
Publicado: (2017) -
Patient‐based 4D digital breast phantom for perfusion contrast‐enhanced breast CT imaging
por: Caballo, Marco, et al.
Publicado: (2018) -
Pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: Perfusion metrics of dynamic contrast enhanced MRI
por: Lee, Jeongmin, et al.
Publicado: (2018)