Cargando…
Predicting the outcome of radiotherapy in brain metastasis by integrating the clinical and MRI‐based deep learning features
BACKGROUND: A considerable proportion of metastatic brain tumors progress locally despite stereotactic radiation treatment, and it can take months before such local progression is evident on follow‐up imaging. Prediction of radiotherapy outcome in terms of tumor local failure is crucial for these pa...
Autores principales: | Jalalifar, Seyed Ali, Soliman, Hany, Sahgal, Arjun, Sadeghi‐Naini, Ali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10083982/ https://www.ncbi.nlm.nih.gov/pubmed/35727568 http://dx.doi.org/10.1002/mp.15814 |
Ejemplares similares
-
Impact of Tumour Segmentation Accuracy on Efficacy of Quantitative MRI Biomarkers of Radiotherapy Outcome in Brain Metastasis
por: Jalalifar, Seyed Ali, et al.
Publicado: (2022) -
Conformance of a 3T radiotherapy MRI scanner to the QIBA Diffusion Profile
por: Carr, Madeline E., et al.
Publicado: (2022) -
MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas
por: Korfiatis, Panagiotis, et al.
Publicado: (2016) -
Time‐resolved MRI for off‐line treatment robustness evaluation in carbon‐ion radiotherapy of pancreatic cancer
por: Meschini, Giorgia, et al.
Publicado: (2022) -
Technical Note: Virtual phantom analyses for preprocessing evaluation and detection of a robust feature set for MRI‐radiomics of the brain
por: Bologna, Marco, et al.
Publicado: (2019)