Cargando…
Trainable segmentation for transmission electron microscope images of inorganic nanoparticles
We present a trainable segmentation method implemented within the python package ParticleSpy. The method takes user labelled pixels, which are used to train a classifier and segment images of inorganic nanoparticles from transmission electron microscope images. This implementation is based on the tr...
Autores principales: | Bell, Cameron G., Treder, Kevin P., Kim, Judy S., Schuster, Manfred E., Kirkland, Angus I., Slater, Thomas J. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10084002/ https://www.ncbi.nlm.nih.gov/pubmed/35502816 http://dx.doi.org/10.1111/jmi.13110 |
Ejemplares similares
-
High-resolution, high-throughput imaging with a multibeam scanning electron microscope
por: EBERLE, AL, et al.
Publicado: (2015) -
Sensitivity of remote focusing microscopes to magnification mismatch
por: Mohanan, Sharika, et al.
Publicado: (2021) -
High‐resolution imaging of organic pharmaceutical crystals by transmission electron microscopy and scanning moiré fringes
por: S'ARI, M., et al.
Publicado: (2020) -
How Ho Chi Minh City adapted its care pathway to manage the first large-scale community transmission of COVID-19
por: Khue, Luong Ngoc, et al.
Publicado: (2023) -
Application of automated electron microscopy imaging and machine learning to characterise and quantify nanoparticle dispersion in aqueous media
por: ILETT, M., et al.
Publicado: (2019)