Cargando…

Coinfection patterns of two marine apicomplexans are not associated with genetic diversity of their polychaete host

Coinfections of two or more parasites within one host are more of a rule than an exception in nature. Interactions between coinfecting parasites can greatly affect their abundance and prevalence. Characteristics of the host, such as genetic diversity, can also affect the infection dynamics of coinfe...

Descripción completa

Detalles Bibliográficos
Autores principales: Hiillos, Anna‐Lotta, Rony, Irin, Rueckert, Sonja, Knott, K. Emily
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10084031/
https://www.ncbi.nlm.nih.gov/pubmed/35711085
http://dx.doi.org/10.1111/jeu.12932
Descripción
Sumario:Coinfections of two or more parasites within one host are more of a rule than an exception in nature. Interactions between coinfecting parasites can greatly affect their abundance and prevalence. Characteristics of the host, such as genetic diversity, can also affect the infection dynamics of coinfecting parasites. Here, we investigate for the first time the association of coinfection patterns of two marine apicomplexans, Rhytidocystis sp. and Selenidium pygospionis, with the genetic diversity of their host, the polychaete Pygospio elegans, from natural populations. Host genetic diversity was determined with seven microsatellite loci and summarized as allelic richness, inbreeding coefficient, and individual heterozygosity. We detected nonsignificant correlations between infection loads and both individual host heterozygosity and population genetic diversity. Prevalence and infection load of Rhytidocystis sp. were higher than those of S. pygospionis, and both varied spatially. Coinfections were common, and almost all hosts infected by S. pygospionis were also infected by Rhytidocystis sp. Rhytidocystis sp. infection load was significantly higher in dual infections. Our results suggest that factors other than host genetic diversity might be more important in marine apicomplexan infection patterns and experimental approaches would be needed to further determine how interactions between the apicomplexans and their host influence infection.