Cargando…
Estimating 3‐D whole‐body composition from a chest CT scan
BACKGROUND: Estimating whole‐body composition from limited region‐computed tomography (CT) scans has many potential applications in clinical medicine; however, it is challenging. PURPOSE: To investigate if whole‐body composition based on several tissue types (visceral adipose tissue [VAT], subcutane...
Autores principales: | Pu, Lucy, Ashraf, Syed F., Gezer, Naciye S., Ocak, Iclal, Dresser, Daniel E., Leader, Joseph K., Dhupar, Rajeev |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10084085/ https://www.ncbi.nlm.nih.gov/pubmed/35737963 http://dx.doi.org/10.1002/mp.15821 |
Ejemplares similares
-
Investigating the use of machine learning to generate ventilation images from CT scans
por: Grover, James, et al.
Publicado: (2022) -
Automated estimation of total lung volume using chest radiographs and deep learning
por: Sogancioglu, Ecem, et al.
Publicado: (2022) -
Improving clinical disease subtyping and future events prediction through a chest CT‐based deep learning approach
por: Singla, Sumedha, et al.
Publicado: (2021) -
Segmentation of dental cone‐beam CT scans affected by metal artifacts using a mixed‐scale dense convolutional neural network
por: Minnema, Jordi, et al.
Publicado: (2019) -
Technical Note: 4D cone‐beam CT reconstruction from sparse‐view CBCT data for daily motion assessment in pencil beam scanned proton therapy (PBS‐PT)
por: den Otter, Lydia A., et al.
Publicado: (2020)