Cargando…

A computed tomography‐based survey of paramedullary diverticula in extant Aves

Avian respiratory systems are comprised of rigid lungs connected to a hierarchically organized network of large, regional air sacs, and small diverticula that branch from them. Paramedullary diverticula are those that rest in contact with the spinal cord, and frequently invade the vertebral canal. H...

Descripción completa

Detalles Bibliográficos
Autores principales: Atterholt, Jessie, Wedel, Mathew J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10084189/
https://www.ncbi.nlm.nih.gov/pubmed/35338748
http://dx.doi.org/10.1002/ar.24923
Descripción
Sumario:Avian respiratory systems are comprised of rigid lungs connected to a hierarchically organized network of large, regional air sacs, and small diverticula that branch from them. Paramedullary diverticula are those that rest in contact with the spinal cord, and frequently invade the vertebral canal. Here, we review the historical study of these structures and provide the most diverse survey to date of paramedullary diverticula in Aves, consisting of observations from 29 taxa and 17 major clades. These extensions of the respiratory system are present in nearly all birds included in the study, with the exception of falconiforms, gaviiforms, podicipediforms, and piciforms. When present, they share connections most commonly with the intertransverse and supravertebral diverticula, but also sometimes with diverticula arising directly from the lungs and other small, more posterior diverticula. Additionally, we observed much greater morphological diversity of paramedullary airways than previously known. These diverticula may be present as one to four separate tubes (dorsal, lateral, or ventral to the spinal cord), or as a single large structure that partially or wholly encircles the spinal cord. Across taxa, paramedullary diverticula are largest and most frequently present in the cervical region, becoming smaller and increasingly absent moving posteriorly. Finally, we observe two osteological correlates of paramedullary diverticula (pneumatic foramina and pocked texturing inside the vertebral canal) that can be used to infer the presence of these structures in extinct taxa with similar respiratory systems.