Cargando…
Spatial+: A novel approach to spatial confounding
In spatial regression models, collinearity between covariates and spatial effects can lead to significant bias in effect estimates. This problem, known as spatial confounding, is encountered modeling forestry data to assess the effect of temperature on tree health. Reliable inference is difficult as...
Autores principales: | Dupont, Emiko, Wood, Simon N., Augustin, Nicole H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10084199/ https://www.ncbi.nlm.nih.gov/pubmed/35258102 http://dx.doi.org/10.1111/biom.13656 |
Ejemplares similares
-
Adjusting for time‐varying confounders in survival analysis using structural nested cumulative survival time models
por: Seaman, Shaun, et al.
Publicado: (2019) -
Design‐based properties of the nearest neighbor spatial interpolator and its bootstrap mean squared error estimator
por: Fattorini, Lorenzo, et al.
Publicado: (2021) -
Confidence bands for multiplicative hazards models: Flexible resampling approaches
por: Dobler, Dennis, et al.
Publicado: (2019) -
A novel statistical method for modeling covariate effects in bisulfite sequencing derived measures of DNA methylation
por: Zhao, Kaiqiong, et al.
Publicado: (2020) -
Causal Mediation Analysis with Multiple Mediators
por: Daniel, R M, et al.
Publicado: (2015)