Cargando…
Generation of induced pluripotent stem cell-derived beta-cells in blood amino acids-like medium
Traditional cell culture media do not accurately represent the availability of the nutrients in plasma. They usually contain a supraphysiological concentration of nutrients such as glucose, amino acids, etc. These high nutrients can alter the metabolism of cultured cells and induce metabolic phenoty...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10084857/ https://www.ncbi.nlm.nih.gov/pubmed/36811942 http://dx.doi.org/10.1242/bio.059581 |
Sumario: | Traditional cell culture media do not accurately represent the availability of the nutrients in plasma. They usually contain a supraphysiological concentration of nutrients such as glucose, amino acids, etc. These high nutrients can alter the metabolism of cultured cells and induce metabolic phenotypes that do not reflect in vivo conditions. We demonstrate that the supraphysiological levels of nutrients interfere with endodermal differentiation. Refinement of media formulations has a potential application in maturity modulation of stem cell-derived β-cells (SC-β) generation in vitro. To address these issues, we established a defined culture system to derive SC-β-cells using a blood amino acids-like medium (BALM). Human induced pluripotent stem cells (hiPSCs) can be efficiently differentiated into the definitive endoderm, pancreatic progenitors, endocrine progenitors, and SC-β in BALM-based med. The differentiated cells secreted C-peptide in vitro in response to high glucose levels and expressed several pancreatic β-cell markers. In conclusion, amino acids at the physiological levels are sufficient for deriving functional SC-β cells. |
---|