Cargando…

Modeling and simulation of current-clamp electroporation

Current-Clamp electroporation refers to the application of a constant current across a membrane which results in voltage fluctuations due to the creation of electropores. This method allows for the measurement of electroporation across a long timescale (minutes) and facilitates the comparison betwee...

Descripción completa

Detalles Bibliográficos
Autores principales: Gurunian, Anthony, Dean, David A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10084880/
https://www.ncbi.nlm.nih.gov/pubmed/35691267
http://dx.doi.org/10.1016/j.bioelechem.2022.108162
_version_ 1785021822811504640
author Gurunian, Anthony
Dean, David A.
author_facet Gurunian, Anthony
Dean, David A.
author_sort Gurunian, Anthony
collection PubMed
description Current-Clamp electroporation refers to the application of a constant current across a membrane which results in voltage fluctuations due to the creation of electropores. This method allows for the measurement of electroporation across a long timescale (minutes) and facilitates the comparison between experimental and theoretical studies. Of particular interest is the claim in the literature that current-clamp electroporation results in the creation of a single pore. We simulated current-clamp electroporation using the Smoluchowski and Langevin equations and identified two possible mechanisms to explain the observed voltage fluctuations. The voltage fluctuations may be due to a single pore or a few pores growing and shrinking via a negative feedback mechanism or the opening and closing of pores in a larger population of pores. Our results suggest that current-clamp conditions do not necessarily result in the creation of a single pore. Additionally, we showed that the Langevin model is more accurate than the Smoluchowski model under conditions where there are only a few pores.
format Online
Article
Text
id pubmed-10084880
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-100848802023-04-10 Modeling and simulation of current-clamp electroporation Gurunian, Anthony Dean, David A. Bioelectrochemistry Article Current-Clamp electroporation refers to the application of a constant current across a membrane which results in voltage fluctuations due to the creation of electropores. This method allows for the measurement of electroporation across a long timescale (minutes) and facilitates the comparison between experimental and theoretical studies. Of particular interest is the claim in the literature that current-clamp electroporation results in the creation of a single pore. We simulated current-clamp electroporation using the Smoluchowski and Langevin equations and identified two possible mechanisms to explain the observed voltage fluctuations. The voltage fluctuations may be due to a single pore or a few pores growing and shrinking via a negative feedback mechanism or the opening and closing of pores in a larger population of pores. Our results suggest that current-clamp conditions do not necessarily result in the creation of a single pore. Additionally, we showed that the Langevin model is more accurate than the Smoluchowski model under conditions where there are only a few pores. 2022-10 2022-05-19 /pmc/articles/PMC10084880/ /pubmed/35691267 http://dx.doi.org/10.1016/j.bioelechem.2022.108162 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ).
spellingShingle Article
Gurunian, Anthony
Dean, David A.
Modeling and simulation of current-clamp electroporation
title Modeling and simulation of current-clamp electroporation
title_full Modeling and simulation of current-clamp electroporation
title_fullStr Modeling and simulation of current-clamp electroporation
title_full_unstemmed Modeling and simulation of current-clamp electroporation
title_short Modeling and simulation of current-clamp electroporation
title_sort modeling and simulation of current-clamp electroporation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10084880/
https://www.ncbi.nlm.nih.gov/pubmed/35691267
http://dx.doi.org/10.1016/j.bioelechem.2022.108162
work_keys_str_mv AT guruniananthony modelingandsimulationofcurrentclampelectroporation
AT deandavida modelingandsimulationofcurrentclampelectroporation