Cargando…
Reduction of NgR in perforant path protects neuronal morphology and function in APP/PS1 transgenic mice
Neuronal loss is the central abnormality occurring in brains suffering from Alzheimer’s disease (AD). The notion that AD causes the death of neurons point towards protection of neuronal morphology and function as important therapeutic strategies. The perforant path projections from the entorhinal co...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10085588/ https://www.ncbi.nlm.nih.gov/pubmed/36961417 http://dx.doi.org/10.18632/aging.204605 |
_version_ | 1785021964673351680 |
---|---|
author | Jiang, Rong Chi, Xiao-Dong Jing, Yulong Wang, Bin Li, Shao |
author_facet | Jiang, Rong Chi, Xiao-Dong Jing, Yulong Wang, Bin Li, Shao |
author_sort | Jiang, Rong |
collection | PubMed |
description | Neuronal loss is the central abnormality occurring in brains suffering from Alzheimer’s disease (AD). The notion that AD causes the death of neurons point towards protection of neuronal morphology and function as important therapeutic strategies. The perforant path projections from the entorhinal cortex to the dentate gyrus is the most vulnerable circuit with respect to AD. It’s known that the perforant path is a very important structure for synaptic plasticity and cognitive functions. NgR (Nogo receptor) is not only involved in limiting injury-induced axonal growth but also in pathological features of AD. So, the mechanism of how NgR affects the perforant path needs further investigation. In this study, the effect of NgR in the perforant path on the neuronal morphology and function in APP/PS1 transgenic mice was studied. The results showed that downregulation of NgR in perforant path ameliorate the damaged morphology and decreased number of neurons in APP/PS1 mice. Concurrently, NgR knockdown enhanced dendritic complexity and increased postsynaptic protein density in APP/PS1 mice. Furthermore, the RT-PCR results indicated that there is downregulation of M1 phenotypes of microglial gene expression in the hippocampus of TG-shNgR mice. Our study suggests that NgR plays a critical role in microglial phenotype polarization, which might account for the NgR knockdown in the perforant path initiated a decrease in neuronal death and improved synaptic function. Our study provided a better understanding of the perforant path and the role of NgR in AD pathogenesis, thus offering the potential application of hippocampal neurons in treatment of AD. |
format | Online Article Text |
id | pubmed-10085588 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Impact Journals |
record_format | MEDLINE/PubMed |
spelling | pubmed-100855882023-04-11 Reduction of NgR in perforant path protects neuronal morphology and function in APP/PS1 transgenic mice Jiang, Rong Chi, Xiao-Dong Jing, Yulong Wang, Bin Li, Shao Aging (Albany NY) Research Paper Neuronal loss is the central abnormality occurring in brains suffering from Alzheimer’s disease (AD). The notion that AD causes the death of neurons point towards protection of neuronal morphology and function as important therapeutic strategies. The perforant path projections from the entorhinal cortex to the dentate gyrus is the most vulnerable circuit with respect to AD. It’s known that the perforant path is a very important structure for synaptic plasticity and cognitive functions. NgR (Nogo receptor) is not only involved in limiting injury-induced axonal growth but also in pathological features of AD. So, the mechanism of how NgR affects the perforant path needs further investigation. In this study, the effect of NgR in the perforant path on the neuronal morphology and function in APP/PS1 transgenic mice was studied. The results showed that downregulation of NgR in perforant path ameliorate the damaged morphology and decreased number of neurons in APP/PS1 mice. Concurrently, NgR knockdown enhanced dendritic complexity and increased postsynaptic protein density in APP/PS1 mice. Furthermore, the RT-PCR results indicated that there is downregulation of M1 phenotypes of microglial gene expression in the hippocampus of TG-shNgR mice. Our study suggests that NgR plays a critical role in microglial phenotype polarization, which might account for the NgR knockdown in the perforant path initiated a decrease in neuronal death and improved synaptic function. Our study provided a better understanding of the perforant path and the role of NgR in AD pathogenesis, thus offering the potential application of hippocampal neurons in treatment of AD. Impact Journals 2023-03-23 /pmc/articles/PMC10085588/ /pubmed/36961417 http://dx.doi.org/10.18632/aging.204605 Text en Copyright: © 2023 Jiang et al. https://creativecommons.org/licenses/by/3.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Jiang, Rong Chi, Xiao-Dong Jing, Yulong Wang, Bin Li, Shao Reduction of NgR in perforant path protects neuronal morphology and function in APP/PS1 transgenic mice |
title | Reduction of NgR in perforant path protects neuronal morphology and function in APP/PS1 transgenic mice |
title_full | Reduction of NgR in perforant path protects neuronal morphology and function in APP/PS1 transgenic mice |
title_fullStr | Reduction of NgR in perforant path protects neuronal morphology and function in APP/PS1 transgenic mice |
title_full_unstemmed | Reduction of NgR in perforant path protects neuronal morphology and function in APP/PS1 transgenic mice |
title_short | Reduction of NgR in perforant path protects neuronal morphology and function in APP/PS1 transgenic mice |
title_sort | reduction of ngr in perforant path protects neuronal morphology and function in app/ps1 transgenic mice |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10085588/ https://www.ncbi.nlm.nih.gov/pubmed/36961417 http://dx.doi.org/10.18632/aging.204605 |
work_keys_str_mv | AT jiangrong reductionofngrinperforantpathprotectsneuronalmorphologyandfunctioninappps1transgenicmice AT chixiaodong reductionofngrinperforantpathprotectsneuronalmorphologyandfunctioninappps1transgenicmice AT jingyulong reductionofngrinperforantpathprotectsneuronalmorphologyandfunctioninappps1transgenicmice AT wangbin reductionofngrinperforantpathprotectsneuronalmorphologyandfunctioninappps1transgenicmice AT lishao reductionofngrinperforantpathprotectsneuronalmorphologyandfunctioninappps1transgenicmice |