Cargando…

Neutralization of the new coronavirus by extracting their spikes using engineered liposomes

The devastating COVID-19 pandemic motivates the development of safe and effective antivirals to reduce morbidity and mortality associated with infection. We developed nanoscale liposomes that are coated with the cell receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zhenjiang, King, Michael R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Author(s). Published by Elsevier Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10085972/
https://www.ncbi.nlm.nih.gov/pubmed/37054806
http://dx.doi.org/10.1016/j.nano.2023.102674
Descripción
Sumario:The devastating COVID-19 pandemic motivates the development of safe and effective antivirals to reduce morbidity and mortality associated with infection. We developed nanoscale liposomes that are coated with the cell receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19. Lentiviral particles pseudotyped with the spike protein of SARS-CoV-2 were constructed and used to test the virus neutralization potential of the engineered liposomes. Under TEM, we observed for the first time a dissociation of spike proteins from the pseudovirus surface when the pseudovirus was purified. The liposomes potently inhibit viral entry into host cells by extracting the spike proteins from the pseudovirus surface. As the receptor on the liposome surface can be readily changed to target other viruses, the receptor-coated liposome represents a promising strategy for broad spectrum antiviral development.