Cargando…

A federated learning differential privacy algorithm for non-Gaussian heterogeneous data

Multi-center heterogeneous data are a hot topic in federated learning. The data of clients and centers do not follow a normal distribution, posing significant challenges to learning. Based on the assumption that the client data have a multivariate skewed normal distribution, we improve the DP-Fed-mv...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Xinyu, Wu, Weisan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10086009/
https://www.ncbi.nlm.nih.gov/pubmed/37037886
http://dx.doi.org/10.1038/s41598-023-33044-y
Descripción
Sumario:Multi-center heterogeneous data are a hot topic in federated learning. The data of clients and centers do not follow a normal distribution, posing significant challenges to learning. Based on the assumption that the client data have a multivariate skewed normal distribution, we improve the DP-Fed-mv-PPCA model. We use a Bayesian framework to construct prior distributions of local parameters and use expectation maximization and pseudo-Newton algorithms to obtain robust parameter estimates. Then, the clipping algorithm and differential privacy algorithm are used to solve the problem in which the model parameters do not have a display solution and achieve privacy guarantee. Furthermore, we verified the effectiveness of our model using synthetic and actual data from the Internet of vehicles.