Cargando…
A federated learning differential privacy algorithm for non-Gaussian heterogeneous data
Multi-center heterogeneous data are a hot topic in federated learning. The data of clients and centers do not follow a normal distribution, posing significant challenges to learning. Based on the assumption that the client data have a multivariate skewed normal distribution, we improve the DP-Fed-mv...
Autores principales: | Yang, Xinyu, Wu, Weisan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10086009/ https://www.ncbi.nlm.nih.gov/pubmed/37037886 http://dx.doi.org/10.1038/s41598-023-33044-y |
Ejemplares similares
-
The Discrete Gaussian Expectation Maximization (Gradient) Algorithm for Differential Privacy
por: Wu, Weisan
Publicado: (2021) -
A Differential Privacy Strategy Based on Local Features of Non-Gaussian Noise in Federated Learning
por: Wang, Xinyi, et al.
Publicado: (2022) -
Federated learning and differential privacy for medical image analysis
por: Adnan, Mohammed, et al.
Publicado: (2022) -
Differential privacy fuzzy C-means clustering algorithm based on gaussian kernel function
por: Zhang, Yaling, et al.
Publicado: (2021) -
PLDP-FL: Federated Learning with Personalized Local Differential Privacy
por: Shen, Xiaoying, et al.
Publicado: (2023)