Cargando…
Photoactivated organic phosphorescence by stereo-hindrance engineering for mimicking synaptic plasticity
Purely organic phosphorescent materials with dynamically tunable optical properties and persistent luminescent characteristics enable more novel applications in intelligent optoelectronics. Herein, we reported a concise and universal strategy to achieve photoactivated ultralong phosphorescence at ro...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10086021/ https://www.ncbi.nlm.nih.gov/pubmed/37037811 http://dx.doi.org/10.1038/s41377-023-01132-3 |
Sumario: | Purely organic phosphorescent materials with dynamically tunable optical properties and persistent luminescent characteristics enable more novel applications in intelligent optoelectronics. Herein, we reported a concise and universal strategy to achieve photoactivated ultralong phosphorescence at room temperature through stereo-hindrance engineering. Such dynamically photoactivated phosphorescence behavior was ascribed to the suppression of non-radiative transitions and improvement of spin-orbit coupling (SOC) as the variation of the distorted molecular conformation by the synergistic effect of electrostatic repulsion and steric hindrance. This “trainable” phosphorescent behavior was first proposed to mimic biological synaptic plasticity, especially for unique experience-dependent plasticity, by the manipulation of pulse intensity and numbers. This study not only outlines a principle to design newly dynamic phosphorescent materials, but also broadens their utility in intelligent sensors and robotics. |
---|