Cargando…

New insights into how popular electronic cigarette aerosols and aerosol constituents affect SARS-CoV-2 infection of human bronchial epithelial cells

The relationship between the use of tobacco products and SARS-CoV-2 infection is poorly understood and controversial. Few studies have examined the effect of electronic cigarettes (ECs) on SARS-CoV-2 infection. We tested the hypothesis that EC fluids and aerosols with nicotine promote SARS-COV-2 inf...

Descripción completa

Detalles Bibliográficos
Autores principales: Phandthong, Rattapol, Wong, Man, Song, Ann, Martinez, Teresa, Talbot, Prue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10086046/
https://www.ncbi.nlm.nih.gov/pubmed/37037851
http://dx.doi.org/10.1038/s41598-023-31592-x
Descripción
Sumario:The relationship between the use of tobacco products and SARS-CoV-2 infection is poorly understood and controversial. Few studies have examined the effect of electronic cigarettes (ECs) on SARS-CoV-2 infection. We tested the hypothesis that EC fluids and aerosols with nicotine promote SARS-COV-2 infection by increasing viral entry into human respiratory epithelial cells. Responses of BEAS-2B cells to JUUL aerosols or their individual constituents were compared using three exposure platforms: submerged culture, air–liquid-interface (ALI) exposure in a cloud chamber, and ALI exposure in a Cultex system, which produces authentic heated EC aerosols. In general, nicotine and nicotine + propylene glycol/vegetable glycerin aerosols increased ACE2 (angiotensin converting enzyme 2) levels, the SARS-CoV-2 receptor; and increased the activity of TMPRSS2 (transmembrane serine protease 2), an enzyme essential for viral entry. Lentivirus pseudoparticles with spike protein were used to test viral penetration. Exposure to nicotine, EC fluids, or aerosols altered the infection machinery and increased viral entry into cells. While most data were in good agreement across the three exposure platforms, cells were more responsive to treatments when exposed at the ALI in the Cultex system, even though the exposures were brief and intermittent. While both nicotine and JUUL aerosols increased SARS-CoV-2 infection, JUUL significantly decreased the effect of nicotine alone. These data support the idea that vaping can increase the likelihood of contracting COVID-19 and that e-liquid composition may modulate this effect.