Cargando…

Nanocellulose-Assisted Construction of Multifunctional MXene-Based Aerogels with Engineering Biomimetic Texture for Pressure Sensor and Compressible Electrode

Multifunctional architecture with intriguing structural design is highly desired for realizing the promising performances in wearable sensors and flexible energy storage devices. Cellulose nanofiber (CNF) is employed for assisting in building conductive, hyperelastic, and ultralight Ti(3)C(2)T(x) MX...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Ting, Song, Qun, Liu, Kun, Liu, Huayu, Pan, Junjie, Liu, Wei, Dai, Lin, Zhang, Meng, Wang, Yaxuan, Si, Chuanling, Du, Haishun, Zhang, Kai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10086089/
https://www.ncbi.nlm.nih.gov/pubmed/37038023
http://dx.doi.org/10.1007/s40820-023-01073-x
_version_ 1785022070866837504
author Xu, Ting
Song, Qun
Liu, Kun
Liu, Huayu
Pan, Junjie
Liu, Wei
Dai, Lin
Zhang, Meng
Wang, Yaxuan
Si, Chuanling
Du, Haishun
Zhang, Kai
author_facet Xu, Ting
Song, Qun
Liu, Kun
Liu, Huayu
Pan, Junjie
Liu, Wei
Dai, Lin
Zhang, Meng
Wang, Yaxuan
Si, Chuanling
Du, Haishun
Zhang, Kai
author_sort Xu, Ting
collection PubMed
description Multifunctional architecture with intriguing structural design is highly desired for realizing the promising performances in wearable sensors and flexible energy storage devices. Cellulose nanofiber (CNF) is employed for assisting in building conductive, hyperelastic, and ultralight Ti(3)C(2)T(x) MXene hybrid aerogels with oriented tracheid-like texture. The biomimetic hybrid aerogels are constructed by a facile bidirectional freezing strategy with CNF, carbon nanotube (CNT), and MXene based on synergistic electrostatic interaction and hydrogen bonding. Entangled CNF and CNT “mortars” bonded with MXene “bricks” of the tracheid structure produce good interfacial binding, and superior mechanical strength (up to 80% compressibility and extraordinary fatigue resistance of 1000 cycles at 50% strain). Benefiting from the biomimetic texture, CNF/CNT/MXene aerogel shows ultralow density of 7.48 mg cm(−3) and excellent electrical conductivity (~ 2400 S m(−1)). Used as pressure sensors, such aerogels exhibit appealing sensitivity performance with the linear sensitivity up to 817.3 kPa(−1), which affords their application in monitoring body surface information and detecting human motion. Furthermore, the aerogels can also act as electrode materials of compressive solid-state supercapacitors that reveal satisfactory electrochemical performance (849.2 mF cm(−2) at 0.8 mA cm(−2)) and superior long cycle compression performance (88% after 10,000 cycles at a compressive strain of 30%). [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40820-023-01073-x.
format Online
Article
Text
id pubmed-10086089
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Springer Nature Singapore
record_format MEDLINE/PubMed
spelling pubmed-100860892023-04-12 Nanocellulose-Assisted Construction of Multifunctional MXene-Based Aerogels with Engineering Biomimetic Texture for Pressure Sensor and Compressible Electrode Xu, Ting Song, Qun Liu, Kun Liu, Huayu Pan, Junjie Liu, Wei Dai, Lin Zhang, Meng Wang, Yaxuan Si, Chuanling Du, Haishun Zhang, Kai Nanomicro Lett Article Multifunctional architecture with intriguing structural design is highly desired for realizing the promising performances in wearable sensors and flexible energy storage devices. Cellulose nanofiber (CNF) is employed for assisting in building conductive, hyperelastic, and ultralight Ti(3)C(2)T(x) MXene hybrid aerogels with oriented tracheid-like texture. The biomimetic hybrid aerogels are constructed by a facile bidirectional freezing strategy with CNF, carbon nanotube (CNT), and MXene based on synergistic electrostatic interaction and hydrogen bonding. Entangled CNF and CNT “mortars” bonded with MXene “bricks” of the tracheid structure produce good interfacial binding, and superior mechanical strength (up to 80% compressibility and extraordinary fatigue resistance of 1000 cycles at 50% strain). Benefiting from the biomimetic texture, CNF/CNT/MXene aerogel shows ultralow density of 7.48 mg cm(−3) and excellent electrical conductivity (~ 2400 S m(−1)). Used as pressure sensors, such aerogels exhibit appealing sensitivity performance with the linear sensitivity up to 817.3 kPa(−1), which affords their application in monitoring body surface information and detecting human motion. Furthermore, the aerogels can also act as electrode materials of compressive solid-state supercapacitors that reveal satisfactory electrochemical performance (849.2 mF cm(−2) at 0.8 mA cm(−2)) and superior long cycle compression performance (88% after 10,000 cycles at a compressive strain of 30%). [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40820-023-01073-x. Springer Nature Singapore 2023-04-10 /pmc/articles/PMC10086089/ /pubmed/37038023 http://dx.doi.org/10.1007/s40820-023-01073-x Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Xu, Ting
Song, Qun
Liu, Kun
Liu, Huayu
Pan, Junjie
Liu, Wei
Dai, Lin
Zhang, Meng
Wang, Yaxuan
Si, Chuanling
Du, Haishun
Zhang, Kai
Nanocellulose-Assisted Construction of Multifunctional MXene-Based Aerogels with Engineering Biomimetic Texture for Pressure Sensor and Compressible Electrode
title Nanocellulose-Assisted Construction of Multifunctional MXene-Based Aerogels with Engineering Biomimetic Texture for Pressure Sensor and Compressible Electrode
title_full Nanocellulose-Assisted Construction of Multifunctional MXene-Based Aerogels with Engineering Biomimetic Texture for Pressure Sensor and Compressible Electrode
title_fullStr Nanocellulose-Assisted Construction of Multifunctional MXene-Based Aerogels with Engineering Biomimetic Texture for Pressure Sensor and Compressible Electrode
title_full_unstemmed Nanocellulose-Assisted Construction of Multifunctional MXene-Based Aerogels with Engineering Biomimetic Texture for Pressure Sensor and Compressible Electrode
title_short Nanocellulose-Assisted Construction of Multifunctional MXene-Based Aerogels with Engineering Biomimetic Texture for Pressure Sensor and Compressible Electrode
title_sort nanocellulose-assisted construction of multifunctional mxene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10086089/
https://www.ncbi.nlm.nih.gov/pubmed/37038023
http://dx.doi.org/10.1007/s40820-023-01073-x
work_keys_str_mv AT xuting nanocelluloseassistedconstructionofmultifunctionalmxenebasedaerogelswithengineeringbiomimetictextureforpressuresensorandcompressibleelectrode
AT songqun nanocelluloseassistedconstructionofmultifunctionalmxenebasedaerogelswithengineeringbiomimetictextureforpressuresensorandcompressibleelectrode
AT liukun nanocelluloseassistedconstructionofmultifunctionalmxenebasedaerogelswithengineeringbiomimetictextureforpressuresensorandcompressibleelectrode
AT liuhuayu nanocelluloseassistedconstructionofmultifunctionalmxenebasedaerogelswithengineeringbiomimetictextureforpressuresensorandcompressibleelectrode
AT panjunjie nanocelluloseassistedconstructionofmultifunctionalmxenebasedaerogelswithengineeringbiomimetictextureforpressuresensorandcompressibleelectrode
AT liuwei nanocelluloseassistedconstructionofmultifunctionalmxenebasedaerogelswithengineeringbiomimetictextureforpressuresensorandcompressibleelectrode
AT dailin nanocelluloseassistedconstructionofmultifunctionalmxenebasedaerogelswithengineeringbiomimetictextureforpressuresensorandcompressibleelectrode
AT zhangmeng nanocelluloseassistedconstructionofmultifunctionalmxenebasedaerogelswithengineeringbiomimetictextureforpressuresensorandcompressibleelectrode
AT wangyaxuan nanocelluloseassistedconstructionofmultifunctionalmxenebasedaerogelswithengineeringbiomimetictextureforpressuresensorandcompressibleelectrode
AT sichuanling nanocelluloseassistedconstructionofmultifunctionalmxenebasedaerogelswithengineeringbiomimetictextureforpressuresensorandcompressibleelectrode
AT duhaishun nanocelluloseassistedconstructionofmultifunctionalmxenebasedaerogelswithengineeringbiomimetictextureforpressuresensorandcompressibleelectrode
AT zhangkai nanocelluloseassistedconstructionofmultifunctionalmxenebasedaerogelswithengineeringbiomimetictextureforpressuresensorandcompressibleelectrode