Cargando…
3D interaction homology: The hydrophobic residues alanine, isoleucine, leucine, proline and valine play different structural roles in soluble and membrane proteins
The aliphatic hydrophobic amino acid residues—alanine, isoleucine, leucine, proline and valine—are among the most common found in proteins. Their structural role in proteins is seemingly obvious: engage in hydrophobic interactions to stabilize secondary, and to a lesser extent, tertiary and quaterna...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10086146/ https://www.ncbi.nlm.nih.gov/pubmed/37056722 http://dx.doi.org/10.3389/fmolb.2023.1116868 |
_version_ | 1785022084356767744 |
---|---|
author | AL Mughram, Mohammed H. Catalano, Claudio Herrington, Noah B. Safo, Martin K. Kellogg, Glen E. |
author_facet | AL Mughram, Mohammed H. Catalano, Claudio Herrington, Noah B. Safo, Martin K. Kellogg, Glen E. |
author_sort | AL Mughram, Mohammed H. |
collection | PubMed |
description | The aliphatic hydrophobic amino acid residues—alanine, isoleucine, leucine, proline and valine—are among the most common found in proteins. Their structural role in proteins is seemingly obvious: engage in hydrophobic interactions to stabilize secondary, and to a lesser extent, tertiary and quaternary structure. However, favorable hydrophobic interactions involving the sidechains of these residue types are generally less significant than the unfavorable set arising from interactions with polar atoms. Importantly, the constellation of interactions between residue sidechains and their environments can be recorded as three-dimensional maps that, in turn, can be clustered. The clustered average map sets compose a library of interaction profiles encoding interaction strengths, interaction types and the optimal 3D position for the interacting partners. This library is backbone angle-dependent and suggests solvent and lipid accessibility for each unique interaction profile. In this work, in addition to analysis of soluble proteins, a large set of membrane proteins that contained optimized artificial lipids were evaluated by parsing the structures into three distinct components: soluble extramembrane domain, lipid facing transmembrane domain, core transmembrane domain. The aliphatic residues were extracted from each of these sets and passed through our calculation protocol. Notable observations include: the roles of aliphatic residues in soluble proteins and in the membrane protein’s soluble domains are nearly identical, although the latter are slightly more solvent accessible; by comparing maps calculated with sidechain-lipid interactions to maps ignoring those interactions, the potential extent of residue-lipid and residue-interactions can be assessed and likely exploited in structure prediction and modeling; amongst these residue types, the levels of lipid engagement show isoleucine as the most engaged, while the other residues are largely interacting with neighboring helical residues. |
format | Online Article Text |
id | pubmed-10086146 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-100861462023-04-12 3D interaction homology: The hydrophobic residues alanine, isoleucine, leucine, proline and valine play different structural roles in soluble and membrane proteins AL Mughram, Mohammed H. Catalano, Claudio Herrington, Noah B. Safo, Martin K. Kellogg, Glen E. Front Mol Biosci Molecular Biosciences The aliphatic hydrophobic amino acid residues—alanine, isoleucine, leucine, proline and valine—are among the most common found in proteins. Their structural role in proteins is seemingly obvious: engage in hydrophobic interactions to stabilize secondary, and to a lesser extent, tertiary and quaternary structure. However, favorable hydrophobic interactions involving the sidechains of these residue types are generally less significant than the unfavorable set arising from interactions with polar atoms. Importantly, the constellation of interactions between residue sidechains and their environments can be recorded as three-dimensional maps that, in turn, can be clustered. The clustered average map sets compose a library of interaction profiles encoding interaction strengths, interaction types and the optimal 3D position for the interacting partners. This library is backbone angle-dependent and suggests solvent and lipid accessibility for each unique interaction profile. In this work, in addition to analysis of soluble proteins, a large set of membrane proteins that contained optimized artificial lipids were evaluated by parsing the structures into three distinct components: soluble extramembrane domain, lipid facing transmembrane domain, core transmembrane domain. The aliphatic residues were extracted from each of these sets and passed through our calculation protocol. Notable observations include: the roles of aliphatic residues in soluble proteins and in the membrane protein’s soluble domains are nearly identical, although the latter are slightly more solvent accessible; by comparing maps calculated with sidechain-lipid interactions to maps ignoring those interactions, the potential extent of residue-lipid and residue-interactions can be assessed and likely exploited in structure prediction and modeling; amongst these residue types, the levels of lipid engagement show isoleucine as the most engaged, while the other residues are largely interacting with neighboring helical residues. Frontiers Media S.A. 2023-03-28 /pmc/articles/PMC10086146/ /pubmed/37056722 http://dx.doi.org/10.3389/fmolb.2023.1116868 Text en Copyright © 2023 AL Mughram, Catalano, Herrington, Safo and Kellogg. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Molecular Biosciences AL Mughram, Mohammed H. Catalano, Claudio Herrington, Noah B. Safo, Martin K. Kellogg, Glen E. 3D interaction homology: The hydrophobic residues alanine, isoleucine, leucine, proline and valine play different structural roles in soluble and membrane proteins |
title | 3D interaction homology: The hydrophobic residues alanine, isoleucine, leucine, proline and valine play different structural roles in soluble and membrane proteins |
title_full | 3D interaction homology: The hydrophobic residues alanine, isoleucine, leucine, proline and valine play different structural roles in soluble and membrane proteins |
title_fullStr | 3D interaction homology: The hydrophobic residues alanine, isoleucine, leucine, proline and valine play different structural roles in soluble and membrane proteins |
title_full_unstemmed | 3D interaction homology: The hydrophobic residues alanine, isoleucine, leucine, proline and valine play different structural roles in soluble and membrane proteins |
title_short | 3D interaction homology: The hydrophobic residues alanine, isoleucine, leucine, proline and valine play different structural roles in soluble and membrane proteins |
title_sort | 3d interaction homology: the hydrophobic residues alanine, isoleucine, leucine, proline and valine play different structural roles in soluble and membrane proteins |
topic | Molecular Biosciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10086146/ https://www.ncbi.nlm.nih.gov/pubmed/37056722 http://dx.doi.org/10.3389/fmolb.2023.1116868 |
work_keys_str_mv | AT almughrammohammedh 3dinteractionhomologythehydrophobicresiduesalanineisoleucineleucineprolineandvalineplaydifferentstructuralrolesinsolubleandmembraneproteins AT catalanoclaudio 3dinteractionhomologythehydrophobicresiduesalanineisoleucineleucineprolineandvalineplaydifferentstructuralrolesinsolubleandmembraneproteins AT herringtonnoahb 3dinteractionhomologythehydrophobicresiduesalanineisoleucineleucineprolineandvalineplaydifferentstructuralrolesinsolubleandmembraneproteins AT safomartink 3dinteractionhomologythehydrophobicresiduesalanineisoleucineleucineprolineandvalineplaydifferentstructuralrolesinsolubleandmembraneproteins AT kelloggglene 3dinteractionhomologythehydrophobicresiduesalanineisoleucineleucineprolineandvalineplaydifferentstructuralrolesinsolubleandmembraneproteins |