Cargando…

Machine learning approaches to identify Parkinson's disease using voice signal features

Parkinson's Disease (PD) is the second most common age-related neurological disorder that leads to a range of motor and cognitive symptoms. A PD diagnosis is difficult since its symptoms are quite similar to those of other disorders, such as normal aging and essential tremor. When people reach...

Descripción completa

Detalles Bibliográficos
Autores principales: Alshammri, Raya, Alharbi, Ghaida, Alharbi, Ebtisam, Almubark, Ibrahim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10086231/
https://www.ncbi.nlm.nih.gov/pubmed/37056913
http://dx.doi.org/10.3389/frai.2023.1084001
Descripción
Sumario:Parkinson's Disease (PD) is the second most common age-related neurological disorder that leads to a range of motor and cognitive symptoms. A PD diagnosis is difficult since its symptoms are quite similar to those of other disorders, such as normal aging and essential tremor. When people reach 50, visible symptoms such as difficulties walking and communicating begin to emerge. Even though there is no cure for PD, certain medications can relieve some of the symptoms. Patients can maintain their lifestyles by controlling the complications caused by the disease. At this point, it is essential to detect this disease and prevent it from progressing. The diagnosis of the disease has been the subject of much research. In our project, we aim to detect PD using different types of Machine Learning (ML), and Deep Learning (DL) models such as Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT), K-Nearest Neighbor (KNN), and Multi-Layer Perceptron (MLP) to differentiate between healthy and PD patients by voice signal features. The dataset taken from the University of California at Irvine (UCI) machine learning repository consisted of 195 voice recordings of examinations carried out on 31 patients. Moreover, our models were trained using different techniques such as Synthetic Minority Over-sampling Technique (SMOTE), Feature Selection, and hyperparameter tuning (GridSearchCV) to enhance their performance. At the end, we found that MLP and SVM with a ratio of 70:30 train/test split using GridSearchCV with SMOTE gave the best results for our project. MLP performed with an overall accuracy of 98.31%, an overall recall of 98%, an overall precision of 100%, and f1-score of 99%. In addition, SVM performed with an overall accuracy of 95%, an overall recall of 96%, an overall precision of 98%, and f1-score of 97%. The experimental results of this research imply that the proposed method can be used to reliably predict PD and can be easily incorporated into healthcare for diagnosis purposes.