Cargando…
Artificial intelligence annotated clinical-pathologic risk model to predict outcomes of advanced gastric cancer
BACKGROUND: Gastric cancer with synchronous distant metastases indicates a dismal prognosis. The success in survival improvement mainly relies on our ability to predict the potential benefit of a therapy. Our objective is to develop an artificial intelligence annotated clinical-pathologic risk model...
Autores principales: | Chen, Yan, Shou, Lin, Xia, Ying, Deng, Yanju, Li, Qianguo, Huang, Zhishuang, Li, Youlan, Li, Yanmei, Cai, Wenliang, Wang, Yueshan, Cheng, Yingying, Chen, Hongzhuan, Wan, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10086433/ https://www.ncbi.nlm.nih.gov/pubmed/37056330 http://dx.doi.org/10.3389/fonc.2023.1099360 |
Ejemplares similares
-
Artificial Intelligence in the Imaging of Gastric Cancer: Current Applications and Future Direction
por: Qin, Yun, et al.
Publicado: (2021) -
Two-step artificial intelligence system for endoscopic gastric biopsy improves the diagnostic accuracy of pathologists
por: Zhu, Yan, et al.
Publicado: (2022) -
Artificial intelligence in thyroid ultrasound
por: Cao, Chun-Li, et al.
Publicado: (2023) -
Application of artificial intelligence to pancreatic adenocarcinoma
por: Chen, Xi, et al.
Publicado: (2022) -
Artificial intelligence applicated in gastric cancer: A bibliometric and visual analysis via CiteSpace
por: Zhang, Guoyang, et al.
Publicado: (2023)