Cargando…
Assessment of chemistry knowledge in large language models that generate code
In this work, we investigate the question: do code-generating large language models know chemistry? Our results indicate, mostly yes. To evaluate this, we introduce an expandable framework for evaluating chemistry knowledge in these models, through prompting models to solve chemistry problems posed...
Autores principales: | White, Andrew D., Hocky, Glen M., Gandhi, Heta A., Ansari, Mehrad, Cox, Sam, Wellawatte, Geemi P., Sasmal, Subarna, Yang, Ziyue, Liu, Kangxin, Singh, Yuvraj, Peña Ccoa, Willmor J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10087057/ https://www.ncbi.nlm.nih.gov/pubmed/37065678 http://dx.doi.org/10.1039/d2dd00087c |
Ejemplares similares
-
A Perspective on
Explanations of Molecular Prediction
Models
por: Wellawatte, Geemi P., et al.
Publicado: (2023) -
Correction: Graph neural network based coarse-grained mapping prediction
por: Li, Zhiheng, et al.
Publicado: (2021) -
Graph neural network based coarse-grained mapping prediction
por: Li, Zhiheng, et al.
Publicado: (2020) -
Natural language processing models that automate programming will transform chemistry research and teaching
por: Hocky, Glen M., et al.
Publicado: (2022) -
Reaction Coordinates
for Conformational Transitions
Using Linear Discriminant Analysis on Positions
por: Sasmal, Subarna, et al.
Publicado: (2023)