Cargando…
Enhancing diversity in language based models for single-step retrosynthesis
Over the past four years, several research groups demonstrated the combination of domain-specific language representation with recent NLP architectures to accelerate innovation in a wide range of scientific fields. Chemistry is a great example. Among the various chemical challenges addressed with la...
Autores principales: | Toniato, Alessandra, Vaucher, Alain C., Schwaller, Philippe, Laino, Teodoro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10087060/ https://www.ncbi.nlm.nih.gov/pubmed/37065677 http://dx.doi.org/10.1039/d2dd00110a |
Ejemplares similares
-
Unbiasing Retrosynthesis Language Models with Disconnection
Prompts
por: Thakkar, Amol, et al.
Publicado: (2023) -
Quantum chemical data generation as fill-in for reliability enhancement of machine-learning reaction and retrosynthesis planning
por: Toniato, Alessandra, et al.
Publicado: (2023) -
Fast Customization
of Chemical Language Models to
Out-of-Distribution Data Sets
por: Toniato, Alessandra, et al.
Publicado: (2023) -
Designing catalysts with deep generative models and computational data. A case study for Suzuki cross coupling reactions
por: Schilter, Oliver, et al.
Publicado: (2023) -
Similarity based enzymatic retrosynthesis
por: Sankaranarayanan, Karthik, et al.
Publicado: (2022)