Cargando…

Surface modifications to promote the osteoconductivity of ultra‐high‐molecular‐weight‐polyethylene fabrics for a novel biomimetic artificial disc prosthesis: An in vitro study

A novel biomimetic artificial intervertebral disc (bioAID) for the cervical spine was developed, containing a hydrogel core representing the nucleus pulposus, an UHMWPE fiber jacket as annulus fibrosis, and titanium endplates with pins for mechanical fixation. Osseointegration of the UHMWPE fibers t...

Descripción completa

Detalles Bibliográficos
Autores principales: Jacobs, Celien A. M., Cramer, Esther E. A., Dias, Aylvin A., Smelt, Harold, Hofmann, Sandra, Ito, Keita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10087191/
https://www.ncbi.nlm.nih.gov/pubmed/36111647
http://dx.doi.org/10.1002/jbm.b.35163
Descripción
Sumario:A novel biomimetic artificial intervertebral disc (bioAID) for the cervical spine was developed, containing a hydrogel core representing the nucleus pulposus, an UHMWPE fiber jacket as annulus fibrosis, and titanium endplates with pins for mechanical fixation. Osseointegration of the UHMWPE fibers to adjacent bone structures is required to achieve proper biomimetic behavior and to provide long‐term stability. Therefore, the aim of this study was to assess the osteoconductivity of several surface modifications of UHMWPE fabrics, 2D weft‐knitted, using non‐treated UHMWPE fibers (N), plasma treated UHMWPE fibers (PT), 10% hydroxy apatite (HA) loaded UHMWPE fibers (10%HA), plasma treated 10%HA UHMWPE fibers (PT‐10%HA), 15%HA loaded UHMWPE fibers (15%HA) and plasma treated 15%HA UHMWPE fibers (PT‐15%HA). Scanning electron microscopy (SEM) was used for surface characterization. Biological effects were assessed by evaluating initial cell attachment (SEM, DNA content), metabolic activity (PrestoBlue assay), proliferation, differentiation (alkaline phosphatase activity) and mineralization (energy dispersive x‐ray, EDX analysis) using human bone marrow stromal cells. Plasma treated samples showed increased initial cell attachment, indicating the importance of hydrophilicity for cell attachment. However, incorporation only of HA or plasma treatment alone was not sufficient to result in upregulated alkaline phosphatase activity (ALP) activity. Combining HA loaded fibers with plasma treatment showed a combined effect, leading to increased cell attachment and upregulated ALP activity. Based on these results, combination of HA loaded UHMWPE fibers and plasma treatment provided the most promising fabric surface for facilitating bone ingrowth.