Cargando…
Model misspecification and bias for inverse probability weighting estimators of average causal effects
Commonly used semiparametric estimators of causal effects specify parametric models for the propensity score (PS) and the conditional outcome. An example is an augmented inverse probability weighting (IPW) estimator, frequently referred to as a doubly robust estimator, because it is consistent if at...
Autores principales: | Waernbaum, Ingeborg, Pazzagli, Laura |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10087564/ https://www.ncbi.nlm.nih.gov/pubmed/36045099 http://dx.doi.org/10.1002/bimj.202100118 |
Ejemplares similares
-
Causality and causal inference in epidemiology: the need for a pluralistic approach
por: Vandenbroucke, Jan P, et al.
Publicado: (2016) -
Commentary: The formal approach to quantitative causal inference in epidemiology: misguided or misrepresented?
por: Daniel, Rhian M, et al.
Publicado: (2016) -
The performance of inverse probability of treatment weighting and full matching on the propensity score in the presence of model misspecification when estimating the effect of treatment on survival outcomes
por: Austin, Peter C, et al.
Publicado: (2015) -
Increasing the generalisability of improvement research with an improvement replication programme
por: Øvretveit, John, et al.
Publicado: (2011) -
Misspecification of confounder-exposure and confounder-outcome associations leads to bias in effect estimates
por: Schuster, Noah A., et al.
Publicado: (2023)