Cargando…
Hybrid U‐Net‐based deep learning model for volume segmentation of lung nodules in CT images
OBJECTIVE: Accurate segmentation of the lung nodule in computed tomography images is a critical component of a computer‐assisted lung cancer detection/diagnosis system. However, lung nodule segmentation is a challenging task due to the heterogeneity of nodules. This study is to develop a hybrid deep...
Autores principales: | Wang, Yifan, Zhou, Chuan, Chan, Heang‐Ping, Hadjiiski, Lubomir M., Chughtai, Aamer, Kazerooni, Ella A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10087884/ https://www.ncbi.nlm.nih.gov/pubmed/35717560 http://dx.doi.org/10.1002/mp.15810 |
Ejemplares similares
-
SAUN: Stack attention U‐Net for left ventricle segmentation from cardiac cine magnetic resonance imaging
por: Sun, Xiaowu, et al.
Publicado: (2021) -
Variability in CT lung-nodule quantification: Effects of dose reduction and reconstruction methods on density and texture based features
por: Lo, P., et al.
Publicado: (2016) -
Deep convolutional neural networks for multiplanar lung nodule detection: Improvement in small nodule identification
por: Zheng, Sunyi, et al.
Publicado: (2020) -
Assessment of fully automatic segmentation of pulmonary artery and aorta on noncontrast CT with optimal surface graph cuts
por: Sedghi Gamechi, Zahra, et al.
Publicado: (2021) -
Segmentation of dental cone‐beam CT scans affected by metal artifacts using a mixed‐scale dense convolutional neural network
por: Minnema, Jordi, et al.
Publicado: (2019)