Cargando…
The predictive accuracy of CT radiomics combined with machine learning in predicting the invasiveness of small nodular lung adenocarcinoma
BACKGROUND: Conventionally, the judgment of whether small pulmonary nodules are invasive is mainly made by thoracic surgeons according to the chest computed tomography (CT) features of patients. However, there are limits to how much useful information can be obtained from this approach. A large numb...
Autores principales: | Liu, Rong-Sheng, Ye, Jia, Yu, Yang, Yang, Zhi-Yan, Lin, Jun-Lv, Li, Xiao-Dong, Qin, Tian-Shou, Tao, Da-Peng, Song, Wei, Wang, Gang, Peng, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10087997/ https://www.ncbi.nlm.nih.gov/pubmed/37057108 http://dx.doi.org/10.21037/tlcr-23-82 |
Ejemplares similares
-
Enhanced CT-Based Radiomics to Predict Micropapillary Pattern Within Lung Invasive Adenocarcinoma
por: Xu, Yunyu, et al.
Publicado: (2021) -
CT Radiomics Combined With Clinicopathological Features to Predict Invasive Mucinous Adenocarcinoma in Patients With Lung Adenocarcinoma
por: Zhang, Junjie, et al.
Publicado: (2023) -
Diagnostic Efficacy of CT Radiomic Features in Pulmonary Invasive Mucinous Adenocarcinoma
por: Sheng, Aizhu, et al.
Publicado: (2022) -
Non-Contrasted CT Radiomics for SAH Prognosis Prediction
por: Shan, Dezhi, et al.
Publicado: (2023) -
CT-Imaging Based Analysis of Invasive Lung Adenocarcinoma Presenting as Ground Glass Nodules Using Peri- and Intra-nodular Radiomic Features
por: Wu, Linyu, et al.
Publicado: (2020)