Cargando…
Machine Learning on Large-Scale Proteomics Data Identifies Tissue and Cell-Type Specific Proteins
[Image: see text] Using data from 183 public human data sets from PRIDE, a machine learning model was trained to identify tissue and cell-type specific protein patterns. PRIDE projects were searched with ionbot and tissue/cell type annotation was manually added. Data from physiological samples were...
Autores principales: | Claeys, Tine, Menu, Maxime, Bouwmeester, Robbin, Gevaert, Kris, Martens, Lennart |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088018/ https://www.ncbi.nlm.nih.gov/pubmed/36963412 http://dx.doi.org/10.1021/acs.jproteome.2c00644 |
Ejemplares similares
-
lesSDRF is more: maximizing the value of proteomics data through streamlined metadata annotation
por: Claeys, Tine, et al.
Publicado: (2023) -
Toward an
Integrated Machine Learning Model of a Proteomics
Experiment
por: Neely, Benjamin A., et al.
Publicado: (2023) -
Updated MS²PIP web server supports cutting-edge proteomics applications
por: Declercq, Arthur, et al.
Publicado: (2023) -
Personalized Proteome:
Comparing Proteogenomics and
Open Variant Search Approaches for Single Amino Acid Variant Detection
por: Salz, Renee, et al.
Publicado: (2021) -
ProteomicsML:
An Online Platform for Community-Curated
Data sets and Tutorials for Machine Learning in Proteomics
por: Rehfeldt, Tobias G., et al.
Publicado: (2023)