Cargando…
Generative adversarial networks in EEG analysis: an overview
Electroencephalogram (EEG) signals have been utilized in a variety of medical as well as engineering applications. However, one of the challenges associated with recording EEG data is the difficulty of recording large amounts of data. Consequently, data augmentation is a potential solution to overco...
Autores principales: | Habashi, Ahmed G., Azab, Ahmed M., Eldawlatly, Seif, Aly, Gamal M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088201/ https://www.ncbi.nlm.nih.gov/pubmed/37038142 http://dx.doi.org/10.1186/s12984-023-01169-w |
Ejemplares similares
-
Auto-Denoising for EEG Signals Using Generative Adversarial Network
por: An, Yang, et al.
Publicado: (2022) -
E2SGAN: EEG-to-SEEG translation with generative adversarial networks
por: Hu, Mengqi, et al.
Publicado: (2022) -
Data Augmentation for EEG-Based Emotion Recognition Using Generative Adversarial Networks
por: Bao, Guangcheng, et al.
Publicado: (2021) -
Emotion Recognition Based on EEG Using Generative Adversarial Nets and Convolutional Neural Network
por: Pan, Bo, et al.
Publicado: (2021) -
Generating mobility networks with generative adversarial networks
por: Mauro, Giovanni, et al.
Publicado: (2022)