Cargando…
Comprehensive benchmark and architectural analysis of deep learning models for nanopore sequencing basecalling
BACKGROUND: Nanopore-based DNA sequencing relies on basecalling the electric current signal. Basecalling requires neural networks to achieve competitive accuracies. To improve sequencing accuracy further, new models are continuously proposed with new architectures. However, benchmarking is currently...
Autores principales: | Pagès-Gallego, Marc, de Ridder, Jeroen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088207/ https://www.ncbi.nlm.nih.gov/pubmed/37041647 http://dx.doi.org/10.1186/s13059-023-02903-2 |
Ejemplares similares
-
RODAN: a fully convolutional architecture for basecalling nanopore RNA sequencing data
por: Neumann, Don, et al.
Publicado: (2022) -
Performance of neural network basecalling tools for Oxford Nanopore sequencing
por: Wick, Ryan R., et al.
Publicado: (2019) -
Nanocall: an open source basecaller for Oxford Nanopore sequencing data
por: David, Matei, et al.
Publicado: (2017) -
Species-specific basecallers improve actual accuracy of nanopore sequencing in plants
por: Ferguson, Scott, et al.
Publicado: (2022) -
Basecalling Using Joint Raw and Event Nanopore Data Sequence-to-Sequence Processing
por: Napieralski, Adam, et al.
Publicado: (2022)