Cargando…
Piloting an automated clinical trial eligibility surveillance and provider alert system based on artificial intelligence and standard data models
BACKGROUND: To advance new therapies into clinical care, clinical trials must recruit enough participants. Yet, many trials fail to do so, leading to delays, early trial termination, and wasted resources. Under-enrolling trials make it impossible to draw conclusions about the efficacy of new therapi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088225/ https://www.ncbi.nlm.nih.gov/pubmed/37041475 http://dx.doi.org/10.1186/s12874-023-01916-6 |
_version_ | 1785022527806898176 |
---|---|
author | Meystre, Stéphane M. Heider, Paul M. Cates, Andrew Bastian, Grace Pittman, Tara Gentilin, Stephanie Kelechi, Teresa J. |
author_facet | Meystre, Stéphane M. Heider, Paul M. Cates, Andrew Bastian, Grace Pittman, Tara Gentilin, Stephanie Kelechi, Teresa J. |
author_sort | Meystre, Stéphane M. |
collection | PubMed |
description | BACKGROUND: To advance new therapies into clinical care, clinical trials must recruit enough participants. Yet, many trials fail to do so, leading to delays, early trial termination, and wasted resources. Under-enrolling trials make it impossible to draw conclusions about the efficacy of new therapies. An oft-cited reason for insufficient enrollment is lack of study team and provider awareness about patient eligibility. Automating clinical trial eligibility surveillance and study team and provider notification could offer a solution. METHODS: To address this need for an automated solution, we conducted an observational pilot study of our TAES (TriAl Eligibility Surveillance) system. We tested the hypothesis that an automated system based on natural language processing and machine learning algorithms could detect patients eligible for specific clinical trials by linking the information extracted from trial descriptions to the corresponding clinical information in the electronic health record (EHR). To evaluate the TAES information extraction and matching prototype (i.e., TAES prototype), we selected five open cardiovascular and cancer trials at the Medical University of South Carolina and created a new reference standard of 21,974 clinical text notes from a random selection of 400 patients (including at least 100 enrolled in the selected trials), with a small subset of 20 notes annotated in detail. We also developed a simple web interface for a new database that stores all trial eligibility criteria, corresponding clinical information, and trial-patient match characteristics using the Observational Medical Outcomes Partnership (OMOP) common data model. Finally, we investigated options for integrating an automated clinical trial eligibility system into the EHR and for notifying health care providers promptly of potential patient eligibility without interrupting their clinical workflow. RESULTS: Although the rapidly implemented TAES prototype achieved only moderate accuracy (recall up to 0.778; precision up to 1.000), it enabled us to assess options for integrating an automated system successfully into the clinical workflow at a healthcare system. CONCLUSIONS: Once optimized, the TAES system could exponentially enhance identification of patients potentially eligible for clinical trials, while simultaneously decreasing the burden on research teams of manual EHR review. Through timely notifications, it could also raise physician awareness of patient eligibility for clinical trials. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12874-023-01916-6. |
format | Online Article Text |
id | pubmed-10088225 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-100882252023-04-12 Piloting an automated clinical trial eligibility surveillance and provider alert system based on artificial intelligence and standard data models Meystre, Stéphane M. Heider, Paul M. Cates, Andrew Bastian, Grace Pittman, Tara Gentilin, Stephanie Kelechi, Teresa J. BMC Med Res Methodol Research BACKGROUND: To advance new therapies into clinical care, clinical trials must recruit enough participants. Yet, many trials fail to do so, leading to delays, early trial termination, and wasted resources. Under-enrolling trials make it impossible to draw conclusions about the efficacy of new therapies. An oft-cited reason for insufficient enrollment is lack of study team and provider awareness about patient eligibility. Automating clinical trial eligibility surveillance and study team and provider notification could offer a solution. METHODS: To address this need for an automated solution, we conducted an observational pilot study of our TAES (TriAl Eligibility Surveillance) system. We tested the hypothesis that an automated system based on natural language processing and machine learning algorithms could detect patients eligible for specific clinical trials by linking the information extracted from trial descriptions to the corresponding clinical information in the electronic health record (EHR). To evaluate the TAES information extraction and matching prototype (i.e., TAES prototype), we selected five open cardiovascular and cancer trials at the Medical University of South Carolina and created a new reference standard of 21,974 clinical text notes from a random selection of 400 patients (including at least 100 enrolled in the selected trials), with a small subset of 20 notes annotated in detail. We also developed a simple web interface for a new database that stores all trial eligibility criteria, corresponding clinical information, and trial-patient match characteristics using the Observational Medical Outcomes Partnership (OMOP) common data model. Finally, we investigated options for integrating an automated clinical trial eligibility system into the EHR and for notifying health care providers promptly of potential patient eligibility without interrupting their clinical workflow. RESULTS: Although the rapidly implemented TAES prototype achieved only moderate accuracy (recall up to 0.778; precision up to 1.000), it enabled us to assess options for integrating an automated system successfully into the clinical workflow at a healthcare system. CONCLUSIONS: Once optimized, the TAES system could exponentially enhance identification of patients potentially eligible for clinical trials, while simultaneously decreasing the burden on research teams of manual EHR review. Through timely notifications, it could also raise physician awareness of patient eligibility for clinical trials. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12874-023-01916-6. BioMed Central 2023-04-11 /pmc/articles/PMC10088225/ /pubmed/37041475 http://dx.doi.org/10.1186/s12874-023-01916-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Meystre, Stéphane M. Heider, Paul M. Cates, Andrew Bastian, Grace Pittman, Tara Gentilin, Stephanie Kelechi, Teresa J. Piloting an automated clinical trial eligibility surveillance and provider alert system based on artificial intelligence and standard data models |
title | Piloting an automated clinical trial eligibility surveillance and provider alert system based on artificial intelligence and standard data models |
title_full | Piloting an automated clinical trial eligibility surveillance and provider alert system based on artificial intelligence and standard data models |
title_fullStr | Piloting an automated clinical trial eligibility surveillance and provider alert system based on artificial intelligence and standard data models |
title_full_unstemmed | Piloting an automated clinical trial eligibility surveillance and provider alert system based on artificial intelligence and standard data models |
title_short | Piloting an automated clinical trial eligibility surveillance and provider alert system based on artificial intelligence and standard data models |
title_sort | piloting an automated clinical trial eligibility surveillance and provider alert system based on artificial intelligence and standard data models |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088225/ https://www.ncbi.nlm.nih.gov/pubmed/37041475 http://dx.doi.org/10.1186/s12874-023-01916-6 |
work_keys_str_mv | AT meystrestephanem pilotinganautomatedclinicaltrialeligibilitysurveillanceandprovideralertsystembasedonartificialintelligenceandstandarddatamodels AT heiderpaulm pilotinganautomatedclinicaltrialeligibilitysurveillanceandprovideralertsystembasedonartificialintelligenceandstandarddatamodels AT catesandrew pilotinganautomatedclinicaltrialeligibilitysurveillanceandprovideralertsystembasedonartificialintelligenceandstandarddatamodels AT bastiangrace pilotinganautomatedclinicaltrialeligibilitysurveillanceandprovideralertsystembasedonartificialintelligenceandstandarddatamodels AT pittmantara pilotinganautomatedclinicaltrialeligibilitysurveillanceandprovideralertsystembasedonartificialintelligenceandstandarddatamodels AT gentilinstephanie pilotinganautomatedclinicaltrialeligibilitysurveillanceandprovideralertsystembasedonartificialintelligenceandstandarddatamodels AT kelechiteresaj pilotinganautomatedclinicaltrialeligibilitysurveillanceandprovideralertsystembasedonartificialintelligenceandstandarddatamodels |