Cargando…
Effects of different concentrations of biochar amendments and Pb toxicity on rhizosphere soil characteristics and bacterial community of red clover (Trifolium pretense L.)
Amending soil with biochar can reduce the toxic effects of heavy metals (HM) on plants and the soil. However, the effects of different concentrations of biochar on the properties and microbial activities in lead (Pb)-contaminated soils are unclear. In this study, two Pb concentrations were set (low,...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088434/ https://www.ncbi.nlm.nih.gov/pubmed/37056492 http://dx.doi.org/10.3389/fpls.2023.1112002 |
_version_ | 1785022576741842944 |
---|---|
author | Meng, Lingdong Wu, Yuchen Mu, Meiqi Wang, Zicheng Chen, Zirui Wang, Lina Ma, Zewang Cui, Guowen Yin, Xiujie |
author_facet | Meng, Lingdong Wu, Yuchen Mu, Meiqi Wang, Zicheng Chen, Zirui Wang, Lina Ma, Zewang Cui, Guowen Yin, Xiujie |
author_sort | Meng, Lingdong |
collection | PubMed |
description | Amending soil with biochar can reduce the toxic effects of heavy metals (HM) on plants and the soil. However, the effects of different concentrations of biochar on the properties and microbial activities in lead (Pb)-contaminated soils are unclear. In this study, two Pb concentrations were set (low, 1000 mg/kg; high, 5000 mg/kg), and five corn straw biochar (CSB) concentrations (0, 2.5, 5, 10 and 15%) were used to determine the response of the growth and rhizosphere of red clover (Trifolium pretense L.) (in terms of soil properties and bacteria) to CSB and Pb application. The results showed that 5% CSB better alleviated the toxicity of Pb on the shoot length of red clover, the biomass increased by 74.55 and 197.76% respectively and reduced the enrichment factor (BCF) and transport factor (TF) of red clover. Pb toxicity reduced soil nutrients, catalase (CAT), acid phosphatase (ACP) and urease activity, while the addition of CSB increased soil pH, soil organic matter (SOM) content and soil enzyme activity. 16S rDNA amplicon sequencing analysis showed that Pb toxicity reduced the diversity of rhizosphere bacteria in red clover and reduced the relative abundance of plant growth-promoting rhizobacteria such as Gemmatimonas, Devosia and Bryobacter. Spearman correlation analysis showed that the addition of alkaline CSB restored the relative abundance of rhizobacteria positively correlated with pH, such as Chitinophaga, Sphingomonas, Devosia and Pseudomonas, and thus restored the rhizosphere soil environment. This study demonstrates that 5% CSB can better alleviate the toxicity of Pb to red clover and soil. We also provide a theoretical basis for the subsequent use of beneficial bacteria to regulate the repair efficiency of red clover. |
format | Online Article Text |
id | pubmed-10088434 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-100884342023-04-12 Effects of different concentrations of biochar amendments and Pb toxicity on rhizosphere soil characteristics and bacterial community of red clover (Trifolium pretense L.) Meng, Lingdong Wu, Yuchen Mu, Meiqi Wang, Zicheng Chen, Zirui Wang, Lina Ma, Zewang Cui, Guowen Yin, Xiujie Front Plant Sci Plant Science Amending soil with biochar can reduce the toxic effects of heavy metals (HM) on plants and the soil. However, the effects of different concentrations of biochar on the properties and microbial activities in lead (Pb)-contaminated soils are unclear. In this study, two Pb concentrations were set (low, 1000 mg/kg; high, 5000 mg/kg), and five corn straw biochar (CSB) concentrations (0, 2.5, 5, 10 and 15%) were used to determine the response of the growth and rhizosphere of red clover (Trifolium pretense L.) (in terms of soil properties and bacteria) to CSB and Pb application. The results showed that 5% CSB better alleviated the toxicity of Pb on the shoot length of red clover, the biomass increased by 74.55 and 197.76% respectively and reduced the enrichment factor (BCF) and transport factor (TF) of red clover. Pb toxicity reduced soil nutrients, catalase (CAT), acid phosphatase (ACP) and urease activity, while the addition of CSB increased soil pH, soil organic matter (SOM) content and soil enzyme activity. 16S rDNA amplicon sequencing analysis showed that Pb toxicity reduced the diversity of rhizosphere bacteria in red clover and reduced the relative abundance of plant growth-promoting rhizobacteria such as Gemmatimonas, Devosia and Bryobacter. Spearman correlation analysis showed that the addition of alkaline CSB restored the relative abundance of rhizobacteria positively correlated with pH, such as Chitinophaga, Sphingomonas, Devosia and Pseudomonas, and thus restored the rhizosphere soil environment. This study demonstrates that 5% CSB can better alleviate the toxicity of Pb to red clover and soil. We also provide a theoretical basis for the subsequent use of beneficial bacteria to regulate the repair efficiency of red clover. Frontiers Media S.A. 2023-03-28 /pmc/articles/PMC10088434/ /pubmed/37056492 http://dx.doi.org/10.3389/fpls.2023.1112002 Text en Copyright © 2023 Meng, Wu, Mu, Wang, Chen, Wang, Ma, Cui and Yin https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Meng, Lingdong Wu, Yuchen Mu, Meiqi Wang, Zicheng Chen, Zirui Wang, Lina Ma, Zewang Cui, Guowen Yin, Xiujie Effects of different concentrations of biochar amendments and Pb toxicity on rhizosphere soil characteristics and bacterial community of red clover (Trifolium pretense L.) |
title | Effects of different concentrations of biochar amendments and Pb toxicity on rhizosphere soil characteristics and bacterial community of red clover (Trifolium pretense L.) |
title_full | Effects of different concentrations of biochar amendments and Pb toxicity on rhizosphere soil characteristics and bacterial community of red clover (Trifolium pretense L.) |
title_fullStr | Effects of different concentrations of biochar amendments and Pb toxicity on rhizosphere soil characteristics and bacterial community of red clover (Trifolium pretense L.) |
title_full_unstemmed | Effects of different concentrations of biochar amendments and Pb toxicity on rhizosphere soil characteristics and bacterial community of red clover (Trifolium pretense L.) |
title_short | Effects of different concentrations of biochar amendments and Pb toxicity on rhizosphere soil characteristics and bacterial community of red clover (Trifolium pretense L.) |
title_sort | effects of different concentrations of biochar amendments and pb toxicity on rhizosphere soil characteristics and bacterial community of red clover (trifolium pretense l.) |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088434/ https://www.ncbi.nlm.nih.gov/pubmed/37056492 http://dx.doi.org/10.3389/fpls.2023.1112002 |
work_keys_str_mv | AT menglingdong effectsofdifferentconcentrationsofbiocharamendmentsandpbtoxicityonrhizospheresoilcharacteristicsandbacterialcommunityofredclovertrifoliumpretensel AT wuyuchen effectsofdifferentconcentrationsofbiocharamendmentsandpbtoxicityonrhizospheresoilcharacteristicsandbacterialcommunityofredclovertrifoliumpretensel AT mumeiqi effectsofdifferentconcentrationsofbiocharamendmentsandpbtoxicityonrhizospheresoilcharacteristicsandbacterialcommunityofredclovertrifoliumpretensel AT wangzicheng effectsofdifferentconcentrationsofbiocharamendmentsandpbtoxicityonrhizospheresoilcharacteristicsandbacterialcommunityofredclovertrifoliumpretensel AT chenzirui effectsofdifferentconcentrationsofbiocharamendmentsandpbtoxicityonrhizospheresoilcharacteristicsandbacterialcommunityofredclovertrifoliumpretensel AT wanglina effectsofdifferentconcentrationsofbiocharamendmentsandpbtoxicityonrhizospheresoilcharacteristicsandbacterialcommunityofredclovertrifoliumpretensel AT mazewang effectsofdifferentconcentrationsofbiocharamendmentsandpbtoxicityonrhizospheresoilcharacteristicsandbacterialcommunityofredclovertrifoliumpretensel AT cuiguowen effectsofdifferentconcentrationsofbiocharamendmentsandpbtoxicityonrhizospheresoilcharacteristicsandbacterialcommunityofredclovertrifoliumpretensel AT yinxiujie effectsofdifferentconcentrationsofbiocharamendmentsandpbtoxicityonrhizospheresoilcharacteristicsandbacterialcommunityofredclovertrifoliumpretensel |