Cargando…
iIL13Pred: improved prediction of IL-13 inducing peptides using popular machine learning classifiers
BACKGROUND: Inflammatory mediators play havoc in several diseases including the novel Coronavirus disease 2019 (COVID-19) and generally correlate with the severity of the disease. Interleukin-13 (IL-13), is a pleiotropic cytokine that is known to be associated with airway inflammation in asthma and...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088697/ https://www.ncbi.nlm.nih.gov/pubmed/37041520 http://dx.doi.org/10.1186/s12859-023-05248-6 |
Sumario: | BACKGROUND: Inflammatory mediators play havoc in several diseases including the novel Coronavirus disease 2019 (COVID-19) and generally correlate with the severity of the disease. Interleukin-13 (IL-13), is a pleiotropic cytokine that is known to be associated with airway inflammation in asthma and reactive airway diseases, in neoplastic and autoimmune diseases. Interestingly, the recent association of IL-13 with COVID-19 severity has sparked interest in this cytokine. Therefore characterization of new molecules which can regulate IL-13 induction might lead to novel therapeutics. RESULTS: Here, we present an improved prediction of IL-13-inducing peptides. The positive and negative datasets were obtained from a recent study (IL13Pred) and the Pfeature algorithm was used to compute features for the peptides. As compared to the state-of-the-art which used the regularization based feature selection technique (linear support vector classifier with the L1 penalty), we used a multivariate feature selection technique (minimum redundancy maximum relevance) to obtain non-redundant and highly relevant features. In the proposed study (improved IL-13 prediction (iIL13Pred)), the use of the mRMR feature selection method is instrumental in choosing the most discriminatory features of IL-13-inducing peptides with improved performance. We investigated seven common machine learning classifiers including Decision Tree, Gaussian Naïve Bayes, k-Nearest Neighbour, Logistic Regression, Support Vector Machine, Random Forest, and extreme gradient boosting to efficiently classify IL-13-inducing peptides. We report improved AUC, and MCC scores of 0.83 and 0.33 on validation data as compared to the current method. CONCLUSIONS: Extensive benchmarking experiments suggest that the proposed method (iIL13Pred) could provide improved performance metrics in terms of sensitivity, specificity, accuracy, the area under the curve - receiver operating characteristics (AUCROC) and Matthews correlation coefficient (MCC) than the existing state-of-the-art approach (IL13Pred) on the validation dataset and an external dataset comprising of experimentally validated IL-13-inducing peptides. Additionally, the experiments were performed with an increased number of experimentally validated training datasets to obtain a more robust model. A user-friendly web server (www.soodlab.com/iil13pred) is also designed to facilitate rapid screening of IL-13-inducing peptides. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12859-023-05248-6. |
---|