Cargando…
Non-intrusive speech quality assessment with attention-based ResNet-BiLSTM
Speech quality is frequently affected by a variety factors in online conferencing applications, such as background noise, reverberation, packet loss and network jitter. In real scenarios, it is impossible to obtain a clean reference signal for evaluating the quality of the conferencing speech. There...
Autores principales: | Shen, Kailai, Yan, Diqun, Ye, Zhe, Xu, Xianbo, Gao, JinXing, Dong, Li, Peng, Chengbin, Yang, Kun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088708/ https://www.ncbi.nlm.nih.gov/pubmed/37362228 http://dx.doi.org/10.1007/s11760-023-02559-2 |
Ejemplares similares
-
An Optimal Stacked ResNet-BiLSTM-Based Accurate Detection and Classification of Genetic Disorders
por: Nandhini, K., et al.
Publicado: (2023) -
ResNet-BiLSTM: A Multiscale Deep Learning Model for Heartbeat Detection Using Ballistocardiogram Signals
por: Liu, Yijun, et al.
Publicado: (2022) -
Bidirectional Long
Short-term Neural Network Based
on the Attention Mechanism of the Residual Neural Network (ResNet–BiLSTM–Attention)
Predicts Porosity through Well Logging Parameters
por: Sun, Youzhuang, et al.
Publicado: (2023) -
Network Intrusion Detection Method Based on FCWGAN and BiLSTM
por: Ma, Zexuan, et al.
Publicado: (2022) -
Prediction of Pollutant Concentration Based on Spatial–Temporal Attention, ResNet and ConvLSTM
por: Chen, Cai, et al.
Publicado: (2023)