Cargando…
Ensemble deep honey architecture for COVID-19 prediction using CT scan and chest X-ray images
Recently, the infectious disease COVID-19 remains to have a catastrophic effect on the lives of human beings all over the world. To combat this deadliest disease, it is essential to screen the affected people quickly and least inexpensively. Radiological examination is considered the most feasible s...
Autores principales: | Reddy, B. Bhaskar, Sudhakar, M. Venkata, Reddy, P. Rahul, Reddy, P. Raghava |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088783/ https://www.ncbi.nlm.nih.gov/pubmed/37360153 http://dx.doi.org/10.1007/s00530-023-01072-3 |
Ejemplares similares
-
Deep neural network to detect COVID-19: one architecture for both CT Scans and Chest X-rays
por: Mukherjee, Himadri, et al.
Publicado: (2020) -
Deep Learning Classification of Tuberculosis Chest X-rays
por: Goswami, Kartik K, et al.
Publicado: (2023) -
Design and Analysis of a Deep Learning Ensemble Framework Model for the Detection of COVID-19 and Pneumonia Using Large-Scale CT Scan and X-ray Image Datasets
por: Xue, Xingsi, et al.
Publicado: (2023) -
Diagnosis of Coronavirus Disease From Chest X-Ray Images Using DenseNet-169 Architecture
por: Dalvi, Pooja Pradeep, et al.
Publicado: (2023) -
FractalCovNet architecture for COVID-19 Chest X-ray image Classification and CT-scan image Segmentation
por: Munusamy, Hemalatha, et al.
Publicado: (2021)