Cargando…
The M-Value: A Simple Sensitivity Analysis for Bias Due to Missing Data in Treatment Effect Estimates
Complete-case analyses can be biased if missing data are not missing completely at random. We propose simple sensitivity analyses that apply to complete-case estimates of treatment effects; these analyses use only simple summary data and obviate specifying the precise mechanism of missingness and ma...
Autor principal: | Mathur, Maya B |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10089074/ https://www.ncbi.nlm.nih.gov/pubmed/36469493 http://dx.doi.org/10.1093/aje/kwac207 |
Ejemplares similares
-
Target Trial Emulation and Bias Through Missing Eligibility Data: An Application to a Study of Palivizumab for the Prevention of Hospitalization Due to Infant Respiratory Illness
por: Tompsett, Daniel, et al.
Publicado: (2022) -
Canonical Causal Diagrams to Guide the Treatment of Missing Data in Epidemiologic Studies
por: Moreno-Betancur, Margarita, et al.
Publicado: (2018) -
Bias Due to Within-Subject Exposure Dependency With or Without Bias Due to Lack of Pairwise Exchangeability When Exposure Is Chronic in Case-Crossover and Case–Time-Control Studies: A Simulation Study
por: Kubota, Kiyoshi, et al.
Publicado: (2023) -
Methods for Dealing With Missing Covariate Data in Epigenome-Wide Association Studies
por: Mills, Harriet L, et al.
Publicado: (2019) -
Analyses of Sensitivity to the Missing-at-Random Assumption Using Multiple Imputation With Delta Adjustment: Application to a Tuberculosis/HIV Prevalence Survey With Incomplete HIV-Status Data
por: Leacy, Finbarr P, et al.
Publicado: (2017)