Cargando…
Explainable fMRI‐based brain decoding via spatial temporal‐pyramid graph convolutional network
Brain decoding, aiming to identify the brain states using neural activity, is important for cognitive neuroscience and neural engineering. However, existing machine learning methods for fMRI‐based brain decoding either suffer from low classification performance or poor explainability. Here, we addre...
Autores principales: | Ye, Ziyuan, Qu, Youzhi, Liang, Zhichao, Wang, Mo, Liu, Quanying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10089104/ https://www.ncbi.nlm.nih.gov/pubmed/36852610 http://dx.doi.org/10.1002/hbm.26255 |
Ejemplares similares
-
Decoding Visual fMRI Stimuli from Human Brain Based on Graph Convolutional Neural Network
por: Meng, Lu, et al.
Publicado: (2022) -
Graph convolutional network for fMRI analysis based on connectivity neighborhood
por: Wang, Lebo, et al.
Publicado: (2021) -
Decoding Task-Based fMRI Data with Graph Neural Networks, Considering Individual Differences
por: Saeidi, Maham, et al.
Publicado: (2022) -
Decoding Spatial Memory Retrieval in Cubical Space Using fMRI Signals
por: Guo, Jiahe, et al.
Publicado: (2021) -
Decoding overlapping memories in the medial temporal lobes using high-resolution fMRI
por: Chadwick, Martin J., et al.
Publicado: (2011)