Cargando…
Application of multi-task transfer learning: The combination of EA and optimized subband regularized CSP to classification of 8-channel EEG signals with small dataset
INTRODUCTION: The volume conduction effect and high dimensional characteristics triggered by the excessive number of channels of EEG cap-acquired signals in BCI systems can increase the difficulty of classifying EEG signals and the lead time of signal acquisition. We aim to combine transfer learning...
Autores principales: | Long, Taixue, Wan, Min, Jian, Wenjuan, Dai, Honghui, Nie, Wenbing, Xu, Jianzhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10089123/ https://www.ncbi.nlm.nih.gov/pubmed/37056962 http://dx.doi.org/10.3389/fnhum.2023.1143027 |
Ejemplares similares
-
Wavelets and subband coding
por: Vetterli, Martin C, et al.
Publicado: (1997) -
The effects of layer-wise relevance propagation-based feature selection for EEG classification: a comparative study on multiple datasets
por: Nam, Hyeonyeong, et al.
Publicado: (2023) -
Bi-Dimensional Approach Based on Transfer Learning for Alcoholism Pre-disposition Classification via EEG Signals
por: Zhang, Hongyi, et al.
Publicado: (2020) -
Wavelets and subbands: fundamentals and applications
por: Abbate, Agostino, et al.
Publicado: (2002) -
Cross-Dataset Variability Problem in EEG Decoding With Deep Learning
por: Xu, Lichao, et al.
Publicado: (2020)