Cargando…
Turning high-throughput structural biology into predictive inhibitor design
A common challenge in drug design pertains to finding chemical modifications to a ligand that increases its affinity to the target protein. An underutilized advance is the increase in structural biology throughput, which has progressed from an artisanal endeavor to a monthly throughput of hundreds o...
Autores principales: | Saar, Kadi L., McCorkindale, William, Fearon, Daren, Boby, Melissa, Barr, Haim, Ben-Shmuel, Amir, London, Nir, von Delft, Frank, Chodera, John D., Lee, Alpha A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10089178/ https://www.ncbi.nlm.nih.gov/pubmed/36877844 http://dx.doi.org/10.1073/pnas.2214168120 |
Ejemplares similares
-
Discovery of SARS-CoV-2 main protease inhibitors using a synthesis-directed de novo design model
por: Morris, Aaron, et al.
Publicado: (2021) -
Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias
por: Kovács, Dávid Péter, et al.
Publicado: (2021) -
An automatic pipeline for the design of irreversible derivatives identifies a potent SARS-CoV-2 M(pro) inhibitor
por: Zaidman, Daniel, et al.
Publicado: (2021) -
High‐throughput identification of RNA nuclear enrichment sequences
por: Shukla, Chinmay J, et al.
Publicado: (2018) -
Rapid recruitment of large cohort to support trials in general practice: the role of FARSITE
por: Bower, Peter, et al.
Publicado: (2015)