Cargando…
3D-equivariant graph neural networks for protein model quality assessment
MOTIVATION: Quality assessment (QA) of predicted protein tertiary structure models plays an important role in ranking and using them. With the recent development of deep learning end-to-end protein structure prediction techniques for generating highly confident tertiary structures for most proteins,...
Autores principales: | Chen, Chen, Chen, Xiao, Morehead, Alex, Wu, Tianqi, Cheng, Jianlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10089647/ https://www.ncbi.nlm.nih.gov/pubmed/36637199 http://dx.doi.org/10.1093/bioinformatics/btad030 |
Ejemplares similares
-
Atomic protein structure refinement using all-atom graph representations and SE(3)-equivariant graph transformer
por: Wu, Tianqi, et al.
Publicado: (2023) -
Combining protein sequences and structures with transformers and equivariant graph neural networks to predict protein function
por: Boadu, Frimpong, et al.
Publicado: (2023) -
Combining protein sequences and structures with transformers and equivariant graph neural networks to predict protein function
por: Boadu, Frimpong, et al.
Publicado: (2023) -
Equivariant
Graph Neural Networks for Toxicity Prediction
por: Cremer, Julian, et al.
Publicado: (2023) -
G-RANK: an equivariant graph neural network for the scoring of protein–protein docking models
por: Kim, Ha Young, et al.
Publicado: (2023)