Cargando…
Prediction models for respiratory outcomes in patients with COVID-19: integration of quantitative computed tomography parameters, demographics, and laboratory features
BACKGROUND: We aimed to develop integrative machine-learning models using quantitative computed tomography (CT) parameters in addition to initial clinical features to predict the respiratory outcomes of coronavirus disease 2019 (COVID-19). METHODS: This was a retrospective study involving 387 patien...
Autores principales: | Kang, Jieun, Kang, Jiyeon, Seo, Woo Jung, Park, So Hee, Kang, Hyung Koo, Park, Hye Kyeong, Hyun, JongHoon, Song, Je Eun, Kwak, Yee Gyung, Kim, Ki Hwan, Kim, Yeon Soo, Lee, Sung-Soon, Koo, Hyeon-Kyoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10089866/ https://www.ncbi.nlm.nih.gov/pubmed/37065603 http://dx.doi.org/10.21037/jtd-22-1076 |
Ejemplares similares
-
COVID-19 focused series: diagnosis and forecast of COVID-19
por: Xu, Tao, et al.
Publicado: (2023) -
Real-time assessment of COVID-19 epidemic in Guangdong Province, China using mathematical models
por: Zeng, Zhiqi, et al.
Publicado: (2023) -
Multi-source dynamic ensemble prediction of infectious disease and application in COVID-19 case
por: Huang, Jianping, et al.
Publicado: (2023) -
Impact of prior vaccination on clinical outcomes of patients with COVID-19
por: Seo, Woo Jung, et al.
Publicado: (2022) -
Level of Arterial Ligation in Rectal Cancer Surgery: Low Tie Preferred over High Tie. A Review
por: Lange, Marilyne M., et al.
Publicado: (2008)