Cargando…
“Canopy fingerprints” for characterizing three-dimensional point cloud data of soybean canopies
Advances in imaging hardware allow high throughput capture of the detailed three-dimensional (3D) structure of plant canopies. The point cloud data is typically post-processed to extract coarse-scale geometric features (like volume, surface area, height, etc.) for downstream analysis. We extend feat...
Autores principales: | Young, Therin J., Jubery, Talukder Z., Carley, Clayton N., Carroll, Matthew, Sarkar, Soumik, Singh, Asheesh K., Singh, Arti, Ganapathysubramanian, Baskar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10090282/ https://www.ncbi.nlm.nih.gov/pubmed/37063230 http://dx.doi.org/10.3389/fpls.2023.1141153 |
Ejemplares similares
-
Deploying Fourier Coefficients to Unravel Soybean Canopy Diversity
por: Jubery, Talukder Z., et al.
Publicado: (2017) -
Using Machine Learning to Develop a Fully Automated Soybean Nodule Acquisition Pipeline (SNAP)
por: Jubery, Talukder Zaki, et al.
Publicado: (2021) -
Soybean Root System Architecture Trait Study through Genotypic, Phenotypic, and Shape-Based Clusters
por: Falk, Kevin G., et al.
Publicado: (2020) -
Computer vision and machine learning enabled soybean root phenotyping pipeline
por: Falk, Kevin G., et al.
Publicado: (2020) -
Hyperspectral band selection using genetic algorithm and support vector machines for early identification of charcoal rot disease in soybean stems
por: Nagasubramanian, Koushik, et al.
Publicado: (2018)