Cargando…
Development and validation of a nomogram model for lung cancer based on radiomics artificial intelligence score and clinical blood test data
BACKGROUND: Artificial intelligence (AI) discrimination models using single radioactive variables in recognition algorithms of lung nodules cannot predict lung cancer accurately. Hence, we developed a clinical model that combines AI with blood test variables to predict lung cancer. METHODS: Between...
Autores principales: | Hu, Wenteng, Zhang, Xu, Saber, Ali, Cai, Qianqian, Wei, Min, Wang, Mingyuan, Da, Zijian, Han, Biao, Meng, Wenbo, Li, Xun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10090418/ https://www.ncbi.nlm.nih.gov/pubmed/37064148 http://dx.doi.org/10.3389/fonc.2023.1132514 |
Ejemplares similares
-
Editorial: The Application of Radiomics and Artificial Intelligence in Cancer Imaging
por: Huang, Hong
Publicado: (2022) -
Development and validation of an MRI-radiomics nomogram for the prognosis of pancreatic ductal adenocarcinoma
por: Xu, Xinsen, et al.
Publicado: (2023) -
Development and validation of a MRI-based combined radiomics nomogram for differentiation in chondrosarcoma
por: Li, Xiaofen, et al.
Publicado: (2023) -
Development and Validation of a Radiomic Nomogram for Predicting the Prognosis of Kidney Renal Clear Cell Carcinoma
por: Gao, Ruizhi, et al.
Publicado: (2021) -
The Impact of Artificial Intelligence CNN Based Denoising on FDG PET Radiomics
por: Jaudet, Cyril, et al.
Publicado: (2021)