Cargando…

ACP-GBDT: An improved anticancer peptide identification method with gradient boosting decision tree

Cancer is one of the most dangerous diseases in the world, killing millions of people every year. Drugs composed of anticancer peptides have been used to treat cancer with low side effects in recent years. Therefore, identifying anticancer peptides has become a focus of research. In this study, an i...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yanjuan, Ma, Di, Chen, Dong, Chen, Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10090421/
https://www.ncbi.nlm.nih.gov/pubmed/37065496
http://dx.doi.org/10.3389/fgene.2023.1165765
Descripción
Sumario:Cancer is one of the most dangerous diseases in the world, killing millions of people every year. Drugs composed of anticancer peptides have been used to treat cancer with low side effects in recent years. Therefore, identifying anticancer peptides has become a focus of research. In this study, an improved anticancer peptide predictor named ACP-GBDT, based on gradient boosting decision tree (GBDT) and sequence information, is proposed. To encode the peptide sequences included in the anticancer peptide dataset, ACP-GBDT uses a merged-feature composed of AAIndex and SVMProt-188D. A GBDT is adopted to train the prediction model in ACP-GBDT. Independent testing and ten-fold cross-validation show that ACP-GBDT can effectively distinguish anticancer peptides from non-anticancer ones. The comparison results of the benchmark dataset show that ACP-GBDT is simpler and more effective than other existing anticancer peptide prediction methods.