Cargando…
Integrating and optimizing genomic, weather, and secondary trait data for multiclass classification
Modern plant breeding programs collect several data types such as weather, images, and secondary or associated traits besides the main trait (e.g., grain yield). Genomic data is high-dimensional and often over-crowds smaller data types when naively combined to explain the response variable. There is...
Autores principales: | Manthena, Vamsi, Jarquín, Diego, Howard, Reka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10090538/ https://www.ncbi.nlm.nih.gov/pubmed/37065625 http://dx.doi.org/10.3389/fgene.2022.1032691 |
Ejemplares similares
-
Evaluating dimensionality reduction for genomic prediction
por: Manthena, Vamsi, et al.
Publicado: (2022) -
Enhancing Hybrid Prediction in Pearl Millet Using Genomic and/or Multi-Environment Phenotypic Information of Inbreds
por: Jarquin, Diego, et al.
Publicado: (2020) -
Deep Kernel and Deep Learning for Genome-Based Prediction of Single Traits in Multienvironment Breeding Trials
por: Crossa, José, et al.
Publicado: (2019) -
Genomic Prediction Using Canopy Coverage Image and Genotypic Information in Soybean via a Hybrid Model
por: Howard, Reka, et al.
Publicado: (2019) -
Multiclass classification of microarray data with repeated measurements: application to cancer
por: Yeung, Ka Yee, et al.
Publicado: (2003)